

セシウム (Cs) は陽イオンで水に溶けやすいが,土 粒子とくに粘土粒子に強く固定されやすいことが著し い特徴である。このため、土壌中ではほとんど移動せ ずに地表面付近にとどまり、土壌から河川や地下水に 流出することはなく、農地に大量に存在しても普通は 作物にはほとんど吸収されない。しかし、土壌への弱 い固定から強い固定への移行は時間を要するプロセス で(図-1) その速度は土壌によって異なる。土壌被覆 から水系への Cs 流出はないといってよいが、市街地 のアスファルトなど土壌以外の被覆からの 2011 年の 沈着直後の水系への流出は大きかった。また、ため池 やダム湖には湖面に沈着した Cs が底質中に存在し, 河川敷や流路に沈着して土砂に固定された Cs が豪雨 時に河川を移動していると考えられる。ここでは、著 者や公的機関が現場測定したデータをもとに、放射性 Cs の環境中の移動現象の実態を示す。

I. 降雨浸透に伴う土壌中の Cs の移動

2011年3月の東京電力福島第一原子力発電所事故 で大気に放出され直後の降雨によって地表に沈着して 土壌に侵入した放射性 Cs は、その後の降雨の浸透水 とともに浸透するが、土壌水とともに下方に移動する のは土壌水に溶解した Cs だけで、土壌固相に固定さ れた Cs は移動しない。水分子の平均移動速度に対す る Cs の平均移動速度の比は土壌中の全 Cs に対する 土壌水中に溶存する量の比である。水分子の平均速度 (v) は、水の浸透フラックス (q) を体積含水率 (θ) で除して得られ $(v=q/\theta), q$ は「降水量 – 蒸発量」で あり、日本(福島)の気象条件ではおよそ1,000 mm/yearで、表層土壌の θ の典型的な値を $\theta=0.5$ と して、水分子の速度(固相への固定のない溶質の速度 も同じ) は約2,000 mm/year (2 m/year) である。Cs が固相に固定されずに土壌水中にのみ存在すれば Cs もこの速度で浸透するが、土壌水中に 1/1,000 しか存 在しなければ2mm/yearの浸透速度となる。

著者は,年間に数 mm のわずかな Cs 移動量をモニ

*東京大学大学院農学生命科学研究科生物・環境工学専攻

図-1 Csの土壌への固定形態と経時変化

タリングするために、鉛で側面窓以外を遮蔽したコリ メータを装着したシンチレーションサーベーメータ で、土中に埋設した塩ビパイプ内で放射能の鉛直分布 を求め、濃度分布の重心位置の2時点の差から平均移 動速度を求める方法を開発した(図-2)¹⁾。図-3は、こ のシステムで測定した Cs の地表面からの平均移動距 離(濃度分布の重心位置)の経時変化である。Cs 降下 から3カ月程度(2011年6月または7月)までのCs 移動量は降雨量(およそ水分子平均移動量)の 1/10~1/20 であるが、それ以降は著しく遅くなり、2 年目以降は水分子の浸透速度(約2m/year)の 1/1.000 程度(数 mm/year) に低下している。この Csの土中移動のモニタリングの結果は、Csの土壌へ の固定状態が弱い固定から強い固定に移行し、これに 伴って土壌水に溶解した移動性の Cs の割合が減少 し、移動速度が遅くなっていることを示している。

II. 土壌への弱い固定から強い固定への移行

Csの土壌固定には、弱い固定と強い固定があり、沈

<u>*?う</u> 放射性セシウム,降雨浸透,セシウムの土壌固定, ため池の汚染,河川流出,大柿ダム

図-2 土中の放射性 Cs 移動量測定システム(土中に設置 した塩ビ管内で,鉛コリメータの側面窓を開いた測 定(open)と鉛で塞ぐ測定(closed)を行い,open から closed を差し引いて窓以外からの漏れを補正 する。放射能の鉛直分布を測定してその重心を求 め,2時点の重心の移動量が Cs の平均移動量を表 す。)

図-3 福島の土壌中のCsの平均移動距離の経時変化およ び積算降水量との関係(一回目の値は土壌サンプリ ングにより、以降は現場測定による。)

着直後の弱い固定から,時間経過によって強い固定に 移行したことが現象を理解する上で重要である(図 -1)。「弱い固定」と著者が呼ぶ固定形態は,負電荷を もつ固体(土粒子,植物,アスファルトなど)の表面 に,陽イオンの一つである Cs が電気力で引きつけら れるものである。土壌中では土壌水中に他の陽イオン と容易に交換される形態(交換態と呼ばれる)で,溶 存態の Cs (イオン)の割合が多く,このため,土壌水 とともに移動しやすく,植物にも吸収されやすい固定 状態である。これに対して,「強い固定」と呼ぶのは, Cs に特有の特定のサイト(粘土の結晶構造の Cs イオ

図-4 Cs-137 を添加した水田土壌の経過日数と交換態 Cs (1 M 酢酸アンモニウム抽出 Cs)割合の経時変化 (実験で添加した Cs の量は土壌試料に含まれる原 子力発電所事故由来の Cs の 10~20 倍である。試 料は室内で蒸発が生じるようにし、2 週間ごとに蒸 発分の水を散布した。)

ンがぴったりはまり込むサイズの「隙間」)への吸着 で、他の陽イオンと交換されて溶解する確率がきわめ て低く、平衡する溶存態の割合が少なく、したがって 土壌水とともに移動しにくく、植物にもほとんど吸収 されない固定状態である。土壌への強い固定が進むこ とによって、図-3のように Cs の浸透速度が低下する とともに、植物の根による Cs 吸収も同様に低下した。 とくに、Cs 降下から 2~3 カ月は溶存態の Cs はまだ 土壌中にかなり存在し植物にも吸収されやすかったと 考えられる。実際、福島県による農作物のモニタリン グによれば、野菜のような畑作物への土壌からの Cs 移行は、2011 年の夏にかけて著しく減少し、それ以降 はほぼ検出限界以下(ND)となった。

このように Cs の土壌への強い固定が Cs 降下から 2 カ月程度は速く進みその後はゆっくりと進むこと を,著者の研究室において,土壌に薬品の Cs を添加 した実験によって確かめた。3 つの水田土壌に放射性 Cs を添加して,その後の1M 酢酸アンモニウムで抽 出される Cs の量を測定し,試料中の全 Cs に対する 割合の経時変化を図-4 に示した。1 M 酢酸アンモニ ウムで抽出される Cs は,交換態と呼ばれ,植物に吸 収されやすい Cs の指標として広く用いられている。 1M 酢酸アンモニウムで抽出される Cs の割合が土壌 への弱い固定の割合と考えた。図-4から、弱い固定 の減少は添加後の1~2ヵ月は速く進み(半減期 18~43日), その後はゆっくり進むことがわかる。ま た,2011年に500 Bq/kgを超える汚染米を産出した 伊達の水田土壌と 2013 年に 100 Bq/kg を超える汚染 米を産出した南相馬の水田土壌では、福島県農業総合 センター(郡山)の水田土壌よりも弱い固定の減少 (強い固定の増加)速度が遅い。とくに南相馬の水田 土壌は著しく遅く、Csの降下から2年以上も経過し て基準超過米が産出された原因が土壌の Cs 固定の弱 さにあることを強く示唆している。このような土壌に 対してはゼオライトのような Cs 固定剤の添加が有効 と考えられるが、Cs 固定剤へのCs の拡散も時間を要 するプロセスで即効性はなく、添加後の年月が経過す るほど固定効果を発揮するはずである。

III. 高濃度放射性 Cs はどこから水系に流出 したのか一ため池の蓄積量調査から一

福島県の一部のため池や市街地河川。阿武隈川や阿 賀野川に放射性 Cs 濃度の高い底泥が堆積している地 点がみられ、ホットスポットとなっている。河川流域 の大半は山の森林であるから、山からの Cs の流出が 心配された。しかし、Csが土壌に強く固定されやす い特性からすれば、Cs の流出源は土壌被覆のある山 や農地ではなく、土壌被覆のない市街地(アスファル トや建物屋根)からの流出であると考えられる。この 仮説を検証するために、ため池の底質には2011年3 月以降に上流から流入した Cs が. 池に直接降下した Cs とともにプランクトンや粘土粒子に固定されて沈 降し底泥に蓄積していることに着目し、水底の底質の 単位面積当たりのCs平均濃度(F_{sed}; Bq/m²)を測定 し,2011 年 3 月の湖面への沈着濃度 (F_{fall}; Bg/m²) と の比 F_{sed}/F_{fall}を求め、上流域が森林であるため池と上 流域の土地被覆の大半がアスファルトと建物であるた め池についてこの比を比較することにした(図-5)²。

調査したため池は、上流域が森林である二つのため 池(本宮市のO池と南相馬市のY池)と、上流域の大 半が市街地(工場)でアスファルト駐車場と道路およ び建物で覆われ降雨排水がU字溝を経て直接流入す るため池(本宮市のH池)である。H池は農林水産省 のため池調査で底泥のCs濃度が10万Bq/kgを超え る高い値を示した池で、O池はこのH池と上流域が 分水嶺で接した近接した池であるが、H池と違って上 流が森林で市街地がない。

ため池の底質のサンプリングは容易でなく、さらに 地上の土壌と違って、Csを固定したプランクトンな どが水中で沈降する過程で水平方向に移動して場所に よる著しい Cs 量のバラツキが生じているため、ため 池全体の平均値 Face の信頼できる値を得るには. 一つ のため池について格子状の多点測定が必要となる。 NaI シンチレーションサーベーメータ (HPI 社, 5000 型)のコネクタ部分を防水し、シンチレーション管と 底質の間の水を排除するためのアタッチメントを取り 付けて底質の Cs 濃度を測定できるようにした(図 -6)。現場測定においては、測量によって格子状の側 線を決めて岸に杭を打ち、ロープを張ってゴムボート を格子点に固定して、プローブを湖底に下して測定し た。一方,湖面の沈着濃度 F_{fall} は地上堤体部の土壌の 表面濃度から得られるが、Fsedの測定と同じ測定器で 周囲に水のある同じ条件で測定するために、水を満た したビニールプールを地表に置いてその中で F_{fall} を測 定することで両者の比 Fsed/Ffall が正確に得られるよう にし、同時に測定値(cpm)をBg/m²に換算するキャ リブレーション定数も得た。現場測定した底質の Cs の濃度は図-7に示すように水深が深い地点ほど濃度 が高い傾向があるが、測定地点によるバラツキが大き く,池全体のCs量と平均値を得るには,多点の測定 が必要であることがわかる。

以上の調査結果をまとめた表-1より,森林集水域

図-6 シンチレーションプローブと水底Cs測定用アタッ チメント(発泡スチロールで水を排除して感度を上 げるとともに、水底で直立させる。鉛は浮力に対す る重りである。)

図-7 ため池底質のCs表面濃度と測点水深との関係(2012年12月現場測定。測定点を、O池では10m、H池では5m間隔の格子点とし、サーベーメータ(図-6)をボートから下して測定した。)

表-1 ため池底質 Cs 濃度(*F_{sed}*),湖面沈着濃度(*F_{fall}*)と その比(*F_{fall}*はため池周囲の土壌表面濃度を現場測 定した。)

	森林ため池		市街地ため池
	0池	Y 池	H池
平均水深(m)	3.00	1.27	2.00
池面積 (m ²)	5,850	7,580	1,770
流域面積(m ² ×100)	1,700	(1,600)	650
流域面積/池面積	29		37
底質の平均 Cs 濃度 Fsed(kBq/m ²)	343	505	1,680
池に降下した Cs 濃度 Ffall(kBq/m ²)	399	603	350
Fsed/Ffall	0.86	0.84	<u>4.81</u>
水の Cs 濃度(Bq/ℓ)			
懸濁態 + 溶存態	0.34	0.45	1.59
溶存態濃度	0.12	0.20	0.93

ため池の底泥に蓄積している Cs 量(*F*_{sed})は、池に降下した濃度とみなされる堤体周辺土壌(*F*_{fall})より約15%少なく、上流から池に流入した Cs より池から流出した量が多いことがわかる。フォールアウトの直後に、水中の Cs がプランクトンなどに付着して底泥に 沈降するまでの間に池から流出したと考えられる。一方、上流域の大半がアスファルトと建物である H 池では、*F*_{sed} が *F*_{fall} の約5倍であり、フォールアウト直後の池からの流出を考えれば、池に直接のフォールアウトした Cs の少なくとも4倍の Cs が上流域から流出して池に流入したことを示している。池の水の Cs 濃度を比較すると、*F*_{sed} にほぼ比例している。

本調査により,放射性 Cs の水系への大きな流出は, 福島県の河川流域の大半を占める森林(山)から生じ たのではなく,アスファルトや建物で被覆された市街 地から生じたことが示された。アスファルトやコンク リートや建物屋根は土壌と違って Cs を固定しにくく 流出しやすいのである。著者が各地で測定したアス ファルト表面濃度は隣接の土壌表面濃度より約50% 低く,沈着直後(2011年夏まで)の降雨で洗い流され たと考えられる。周辺の沈着濃度に比べて高濃度に Cs を蓄積して問題になっているため池はいずれも, 周囲がアスファルト道路やコンクリートでその雨水が 流入する市街地の中のため池である。また,福島県な らびに周辺都市の下水汚泥の Cs 濃度が高いことが問 題となっているが、これもアスファルトなどの土壌で ない人工物に沈着して洗い流されたものである。農業 用水路内の Cs も、大部分は河川から流入したもので はなく、用水路内に沈着した Cs と用水路に沿うアス ファルト道路から流出して水路に流入した Cs が水路 内の土砂に固定されたものと思われる。

なお,ため池やダム湖の底質のような野外における 環境中のCs 濃度は,Bq/m²によって表すことで汚染 や蓄積の大小を比較できる。これを,サンプリング深 さと底質密度によって著しく値が異なるBq/kg で表 示することは適切ではない(放射性廃棄物はBq/kg で表す必要がある。また作土が混合されて作物生産が 行われる農地では,深さを15 cm に指定して乾土の単 位質量当たりの平均Cs 濃度をBq/kg で表示するこ とに意味がある)。

IV. 森林流域(大柿ダム流域)における Csの挙動

大柿ダム(浪江町)周辺の上流側は、原子力発電所 の外としては最も高濃度に Cs が沈着した汚染地域で あり、ダム湖の底質の Cs 濃度が高く問題となってい る。農林水産省がダム湖に流入する河川と流出する水 のCs濃度と流量を連続に測定しており³⁾,流域におけ る Cs の動態を定量的に知ることができる (図-8)。ダ ム湖の底質に存在する Cs 量も多点の底質サンプリン グを行って総量と平均濃度(Bq/m²)が正確に測定さ れている。これによれば、ダム湖の底質に存在する Cs はダム湖に沈着した Cs(航空機モニタリングから 推定)の1.08倍であり、上流からの流入による増加 があるものの、大半が2011年3月にダムの湖面に沈 着した Cs であり,周辺土壌の Cs 濃度と大差がない。 年間に流域から流出する(ダム湖に流入する) Cs 量 は、流域全体の沈着量の1/700~1/200で大きくない が、流域面積がダム湖面積の115倍なので、ダム湖底 質の濃度増加への寄与は小さくない。流入水ならびに

498

流域沈着量:C=393,000,000 (MBq)							
流出量:E	年間流域流出率:	ダム湖流出					
) (MBq/year)	D/C(%/year)	率: $E/D(\%)$					
74,300	0.20	9.5					
47,300	0.15	8.3					
267,000	0.46	14.9					
	支沈着量: C=393 → 流出量: E → (MBq/year) 74,300 47,300 267,000	支沈着量:C=393,000,000 (MBq) 流出量:E 年間流域流出率: (MBq/year) D/C(%/year) 74,300 0.20 47,300 0.15 267,000 0.46					

図-8 大柿ダムの流域とダム湖の Cs-137 の動態(農林水 産省調査資料より作成。2015 年は,9月の記録的豪 雨時に過去2カ年の年間値のDは2~3倍,Eは 1.4~1.7倍であった。)

ダム湖の溶存態の Cs 濃度はほぼ1 Bq/ℓ以下で低い。 流入する Cs の形態は,ほとんどが浮遊する土粒子に 固定された懸濁態であり,さらに大部分が豪雨時に流 入する。2015 年 9 月の記録的豪雨では,著しく増加 した流量で過去 2 年分に相当する懸濁態 Cs が流入し た。ダム湖から流出する Cs 量(これもほとんど懸濁 態)は流入量の 8~15%(2013 年 9 月豪雨時を除けば 10%以下)でほぼ 90%はダムでトラップされており, 下流への Cs 拡散を防ぐダムの効果は大きい。

では、量的に多くはないが、流域から河川流出して いる Cs は、どこから来たのであろうか。流域の大半 を占める森林から流出していると考えるのが普通であ ろう。しかし、Cs が土壌表層 5 cm 程度の限られた層 に固定されてほとんど移動せず、林地内での土壌侵食 はまれであることを考えれば、著者は、林地内部から の流出は事実上ゼロで、主要な流出源は、通常は水の 流れがなく豪雨時にのみ水流に没する河川敷や森林内 の流路で、2011 年 3 月に河川敷や流路内に沈着して 土砂に固定された Cs が豪雨時に河道内を移動してい るのではないかと考える。さらに、河川に沿って走る 道路のアスファルト表面から 2011 年の沈着直後に側 溝を通って河川に流出した Cs も加わっているはずで ある。この仮説を検証するために、著者らは河川敷内 の横断方向の Cs 表面濃度分布を調べ、河川敷に沈着 1. 流域全体から均一に流出:減衰は遅い

図-9 森林流域からの Cs の流出形態と減衰速度(著者は 下図(2)だと考える。いずれにしても,流域に沈着 した Cs はほとんど流出せずに自然崩壊する。)

した Cs が豪雨時に移動・堆積しながら下流に移動し ていることを示す濃度分布を得ている。もし,河川に 流出している Cs が流域全体から確率的に均一に流出 しているとすれば,年間流出量が存在量に比例すると して,存在量の1/200~1/700の年間流出であるから, 流出半減期は150~500年である(図-9)。しかし,豪 雨時に流路となる限られた面積に沈着した Cs のみが 流出していると仮定すれば流出量の減衰ははるかに速 く,仮にこの流出面積を流域の1/50とすれば,流出 半減期は数年~10年である。著者の予測は後者であ る。

引用文献

- Shiozawa, S.: Vertical migration of radiocesium fallout in soil in Fukushima, in "Agricultural Implications of the Fukushima Nuclear Accident, ed. Nakanishi, T. and Tanoi, K.", Springer, pp.49~60 (2013)
- 2) 塩沢 昌:放射性セシウムの土壌中の挙動,水稲への移行, 水系への流出 放射能除染の土壌科学 - 森・田・畑から家 庭菜園まで -, 日本学術協力財団, pp.64~94 (2013)
- 東北農政局:大柿ダムにおける放射性セシウム調査結果に ついて、http://www.maff.go.jp/tohoku/osirase/higai_ taisaku/hukkou/151030_torimatome_oo.html

〔2016.5.10.受理〕

塩沢	昌 (正会員)	略歴
		1979年	東京大学大学院修士課程修了
6	1	1980年	山形大学農学部助手
1 mars	2	1986年	東京大学農学部助手
The states		1995年	筑波大学農林工学系助教授
1.	1	2001年	東京大学大学院農学生命科学研究科助教
			授
		2004年	同教授
			現在に至る