頭首エ下流の河床洗掘による災害の防止対策の現状

Present Situation of Countermeasures to Prevent Disasters Caused by River-bed Scouring

Downstream of Diversion Dams

○高井 和彦*, 三輪 弌** TAKAI Kazuhiko, MIWA Hajime

1. はじめに

日本の多くの河川では、昭和 30~50 年代にかけて急速な河床低下が進行した。その要 因は、建設資材としての砂利採取や治水上の必要性から実施された河道掘削によるもので ある。河川を横断して設置される頭首工は、このような河床低下により直下流の河床洗掘 が引き起こされ、堰体の安全が脅かされている。これらに加えて、河床洗掘の洗掘位置や 深さは、洪水時の水流の蛇行と密接に関係するので、頭首工上下流区間の砂礫堆形成とい う視点から考察を加える必要がある。本稿では、航空写真の比較判読と現地調査、資料解 析によって、現況施設の被災状況を明らかにするとともに、河床洗掘現象に対し実施され る対策工法の設置状況とその効果等の実態を考察する。

今回調査の対象としたのは、北海道鵡川の2頭首工と和歌山県紀ノ川の3頭首工である。

2. 河床低下による頭首工下流の河床洗掘

頭首工下流部における河床洗掘の大きな原因は,昭和 40 年前後に広く実施された砂利 採取による河床低下であると推察される。その一例を図-1の岩出頭首工(紀ノ川)周辺 の航空写真で示す。河道内の水域が大きく広がり、寄洲部で広範な砂利採取がなされてい る。このような状態で洪水に見舞われると,頭首工上流の掘削部に,上流区間から運ばれ てきた砂礫が堆積するため,頭首工下流は流下する砂礫が減少する。その結果,頭首工下 流では河床洗掘が進行する。例えば,図-2の写真に見られるように,紀ノ川岩出頭首工 では下流水叩きの延長・補強工事がなされるとともに,下流の鉄道橋の橋脚基礎周辺に大 量の保護ブロックが投入されている。

*岩手大学大学院連合農学研究科U.G.S.A.S Iwate Univ.,**岩手大学農学部Faculty of Agric. Iwate Univ. キーワード:頭首工,河床洗掘,災害防止工法,砂礫堆

3. 砂礫堆に伴う水流蛇行と下流河床洗掘との関係

頭首工下流の洗掘は,前記のような河床全体の低下による要因に,以下に示す砂礫堆の 形成・移動による要因が加わる。この砂礫堆は,平水時のみお筋や洪水時の主流線の通り 道を規定するから,頭首工の下流の河床洗掘を考察する上で,砂礫堆の形状とそれに伴う 水流蛇行の状況を把握することがきわめて重要である。

砂礫堆と水流蛇行との関係を、図-3に示す。太線で囲んだ一つの砂礫堆に着目すると、 左岸に深く細い淵があり、下流に行くに従いその深掘れ部の幅が広がっていく。さらに下 流へ進むと砂礫堆はほぼ川幅いっぱいを占めるようになる一方、深さがしだいに浅くなり 洲として発達する。洪水が来て水位が上がると洲も水没し、河道幅全体を洪水流が流下す るが、主流部は、図のように、砂礫堆の形状に従って蛇行する。見方を変えると、洪水流 が河道幅一杯に左右に蛇行するために、砂礫堆が形成され、淵や瀬が発達するのである。

このように,砂礫堆の形成・移動により頭首工周辺河床において局所的洗掘や堆積が起 こる。この際に発生する河床洗掘も,水叩き下流全域で均等に発生するのではなく,左右 岸に寄ることとなり,しかも砂礫堆が移動する場合は,最大深掘れ箇所も変化する。

図-3 砂礫堆に伴う水流蛇行の概念

4. 砂礫堆形状と頭首エ下流河床洗掘との関係

4-1.小田頭首工(紀ノ川)

小田頭首工は,蛇行する河道の2つの湾曲部の中間地点に設置されている。したがって, 図-4の航空写真に見られるように,左岸側に寄洲・右岸側にみお筋という河床形態にな る。以前の航空写真と比較しても,この河床形状のパターンは変化していない。頭首工は, 右岸側が可動堰,左岸側が固定堰という構造を有しており,河床形状に適応したものであ る。なお,現在では,全体的な河床低下が進行したために,図-5のとおり,右岸側のみ お筋部が低水路化し,頭首工下流の左岸寄洲部は高水敷化して,複断面河道になっている。

下流の河床洗掘に対応するため,下流水叩きの下流端と河床深く打ち込んだ鋼矢板を連 接し,さらに河床面上に護床工を敷き並べて,災害防止対策としている。

図-4 小田頭首工付近の河道状況(1997年国土地理院撮影)

図-5 小田頭首エ下流の河床低下状況(2006年撮影)

4-2.藤崎頭首工(紀ノ川)

藤崎頭首工は、両岸取水という制約のもと、狭窄部に設置することで取水を維持してい る。両岸に土砂吐ゲートを設置しているため、土砂吐直下流部で、両岸とも洗掘が発生し ている。中央部固定堰下流の河床洗掘は堰の全体で発生しているが、洪水の主流線は、上 流側で左岸に沿った状態から下流右岸側に移っていく中間に頭首工が位置しているため、 図-7に見られるように、堰下流の河床洗掘は、中央部から少し右岸側に寄った位置で発 生している。

図-6 藤崎頭首エ付近の河道状況 (1997年国土地理院撮影)

図-7 下流洗掘状況 (第2 十津川紀ノ川土地改良事業図より)

5. 砂礫堆が移動する区間に設置された頭首工の場合

鵡川の川東頭首工は、河道が大きく右に湾曲する下流部に設置されている。1967 年と 1983 年での河道状況を航空写真で比較すると、図-8のように頭首工上流左岸の旭生橋上 流の寄洲が大きく下流に移動し、旭生橋地点で左岸側にあったみお筋が完全に右岸側に移 動している。このような砂礫堆の下流への移動はさらに進行し、2006 年現在では、図-9 のとおり、左岸取入れ口近くまで接近している。1975 年と 1981 年に連続して発生した洪 水において、下流河床洗掘によって護床工流失などの災害を被った。このころの砂礫堆と の位置関係から、洪水主流が左岸側に集中しており、河岸よりの河床洗掘が大きかったも のと推察される。現在の砂礫堆左岸先端が頭首工に到達した位置関係においては、深掘れ の少ない平らな横断面に堰が設けられていることになる。堰下流の局所的な河床洗掘があ まり大きくならない状況にある。6. において述べるように下流護床工が補強された効果 とあいまって、平成15 年、18 年の2 度の洪水でも大きな被害は発生していない。

1967 年

1983 年

図-8 川東頭首エ付近の河道(国土地理院撮影)

図-9 川東頭首工上流河道状況(2006年撮影)

6. 河床洗掘による災害の防止対策

頭首工下流の護床工設置は,頭首工エプロンを流下した高速流のもつエネルギーを減勢 し,護床工下流部分の流速と等しくして,下流河川へ緩やかに連続させることを目的とし ている。盛んに砂利採取が実施されていた頃からその影響が強く残って河床低下が起きて いた頃は,下流護床工が設置されても,その設置目的は果たされず,下流河床洗掘が顕著 に進行する。このため,川東頭首工では,河床洗掘範囲の広がりに対処するため,図-1 0に見られるように,多段落差工を設置するとともに,護床工を河床洗掘形状に合せて斜 め下方に約50mも延長して対策としている。

紀ノ川岩出頭首工では、下流水叩きの延長と護床工設置で対応していたが、追加的な対 策が必要になり、図-11にように最近の工事で護床ブロックが延長された。いずれも、 下流側に護床工を延長することで下流洗掘による河床低下部分へと擦り付けることで対 策としている。この際に課題として挙げられることとして、洪水が発生し災害を受けると、 さらに下流側へ対策を行う必要があり、護床工の延長が非常に大きくなることが懸念され る。水叩き下流の護床ブロックの効果については、ブロックがほとんど流失してしまった 事例が報告されている。これは、水流に対する護床ブロック重量の不足や、中詰材等の吸 出し、連結材の腐食等により発生しているものと推察される。

これら現場で起きている状況から、河床洗掘の防止対策ではなく、河床洗掘が原因となった頭首工災害の防止対策として、問題を設定する必要のあることがわかる。鵡川の川西 頭首工では、図-12及び図-13に示すように、鋼矢板により落差工とする対策工法が 採用されている。紀ノ川小田頭首工でも同様の工法が採用されており、下流端での深掘れ に対して頭首工本体への影響が比較的小さく、護床ブロック中詰材等の吸出し防止の観点 からも有効であると推察される。災害防止にとってより有効な対策の考案・提案を、今後 の検討課題としていきたい。

図-10 川東頭首工における災害防止対策の事例(災害復旧図より)

図-11 岩出頭首工における災害防止対策の事例(第2 十津川紀ノ川土地改良事業図より)

図-12 川西頭首工における災害防止対策の事例(災害復旧図より)

図-13 川西頭首工における災害防止対策

7. まとめ

頭首工の下流河床洗掘は,河川全体の河床低下が主たる原因になって発生する。その上 に砂礫堆の形状との位置関係から,洪水時蛇行水流の通過箇所が決定され,頭首工下流の 河床洗掘状況に違いが生じる。また,砂礫堆が下流へ移動する場合には,砂礫堆との位置 関係の変化によって,下流深掘れ箇所の大きさが変化する。このような河床洗掘の実態を 明らかにした上で,河床洗掘による災害の防止策のとその効果について,事例をもとに検 討した。

本研究では、小田井、藤崎井、紀ノ川左岸、鵡川の各土地改良区の方々および和歌山県 海草振興局の辻康成氏より資料の提供や現地調査等で多大のご協力をいただきました。こ こに、記して謝意を表します。

【参考文献】

- 1. 三輪弌・倉島栄一:頭首工災害研究におけるフィールドサイエンス的アプローチ, 農業 土木学会誌71(1), pp.27-30, 2002
- 2. Miwa H., Kurashima E.: Present situation and cause analysis of diversion dam failures in Japan, Paddy and Water Environment, Vol. 1(4), pp.207-214.
- 3. 三輪弌:河川蛇行研究からみた頭首工計画のあり方,農業工学研究所水工研究会,頭首 工の最近の話題(つくば市), pp.1-28, 2006

頭首工周辺堆砂による機能障害

Function Troubles Caused by Sand and Gravel Deposit around Diversion Dams

三輪 弌*,高井和彦** MIWA Hajime, TAKAI Kazuhiko

1 はじめに

頭首工の構造は,昭和 51 年施行の河川構造令にしたがって設計・施工される。河川構造令が制定された当時は,頭首工下流の河床洗掘と堰固定部による洪水位上昇,さらに堰周辺河岸の侵食被害が大きな問題になっていた。そのため,洪水を安全に流下させることを重視し,河川改修計画による洪水流下断面を確保できるよう,堰の固定部天端の高さを決定するようにした。多くの河川で計画高水流量を大きくとるために計画流下断面を拡大するが,そのさい,現況河床を切り下げて計画河床高とすることが多い。つまり現況より低い計画河床高に合わせた堰天端高となるため,河川構造令施行以降に建設された頭首工は,ひとたび洪水に見舞われると,もとの河床高復元によって可動堰ゲート直下に堆砂が発生し,ゲート閉鎖不能などのトラブルに悩まされることになった。

この堆砂問題について,三輪は,多数の頭首工の実態調査分析と模型水路実験による堆砂再現と 予防対策検討を行なった^{1),2),3),4}。ところが適切な対策がとられないまま,現在も洪水のたび に堆砂に悩まされている頭首工が多いことが分かったので,改めてその実態を調査・解析し,事後 および予防のための対策を提言したいと考え,研究を再開した。まず,現在,トラブルが発生して いる頭首工の実態調査を行ったので,その結果を報告する。

2 堆砂による機能障害事例

(1) 可動堰ゲート閉鎖障害

岡山県吉井川の新田原井堰は,国営吉井川農業水利事業によって昭和61年に建設された全面可 動堰である。5門の可動堰ゲートは,いずれも40.4m幅であるが,総貯水容量2,120千m³をもつ

 堰直下の堆砂形状
 下流部の元河道へのすり付け

 図 - 1 新田原井堰(岡山県吉井川)下流の堆砂(2007.10.05)
 三輪撮影)

^{*} 岩手大学農学部 , Faculty of Agriculture, Iwate University

^{**} 岩手大学大学院連合農学研究科, United Graduate School of Agricultural Sciences, Iwate University キーワード:頭首工,河川構造令,計画河床,砂礫堆,堆砂,機能障害

ため,堤高8.2m という高いゲートになっている。旧来の田原井堰は,現在の右岸取水口から斜め 上流に長く延びた長さ約500mにも達する長大な斜め堰であった。

新堰の建設に合わせて,旧堰の撤去と堰上流の河床掘削が実施されたので,建設当初は,あまり 堆砂の心配はなかったが,徐々に堰の上下流部に堆砂が発達した。下流部の堆砂状況は,図-1に 見られるとおりで,堆砂部の最高位は,堰敷高より2m程度も高くなっている。なお,堰の上下流 区間は,計画河道平面形状になるように工事施工されたが,その下流河道は,従来のままで,河岸 法線と河床を未施工の下流河道にすり付けている。改修河道区間の220mの河道幅が,約150m幅 に縮小するために,堰下流への堆砂を促進していると推察される。なお,平成19年度中に約 35,000m³の河床掘削が計画されている。

(2) 転倒堰起立不能

岩手県滝名川の中央頭首工は,河道幅約40m低水路幅約20mで直線的に改修された河道区間に

平成4年3月に完成した。堰 の完成後,徐々に堰上流部へ の堆砂が進行していたため, ゴム堰の起立時に若干不都 合が生じつつあった。そして 本年9月17日の集中豪雨に よって,図-2に見られるよ うに左岸から中央部にかけ て大量の砂礫が堆積し,ゴム 堰の完全な起立が不能にな った。このときの出水ピーク 時は低水路満杯の流量であ った。

この堰上下流の堆砂域に ついて,三輪研究室では河床 横断測量を実施して堆砂形 状と堆砂量の計測を進める

図 - 2 中央頭首工(岩手県滝名川)ゴム堰周辺堆砂(2007.10.15 三輪撮影)

(2007.10.15)三輪研究室測量)

とともに,砂礫の粒度分布 調査も実施して洪水時の水 理諸量との関係解析を進め ている。堰の直上・直下の 横断河床形状と起立時のゴ ム堰との関係を図-3に示 す。洪水時にゴム堰が平伏 した上に最大約80cmの堆 砂が見られ,起立不能にな ったことが分かる。

中央頭首工の上下流約 1km は河川改修工事が完 了した区間である。この洪 水の前には,堰の下流部に はほとんど堆砂が見られな かったことから,ゴム堰の 建設時に堰の上下流河床の

図 - 4 川東頭首工(北海道鵡川) 取水口直上流の堆砂(2007.08.31 三輪撮影)

一部区間が掘削され,その区間に今回の洪水によって堆砂が発生したものと推察される。

(3) 取水上のトラブル

堰のない自然取水や全面固定堰による取水の場合,取水口前面に堆砂が発生すると,みお筋が取 水口から離れるため,取水不能に陥る。可動堰ゲートによって取水位を堰上げ,湛水域から取水す る場合は,ゲートが閉鎖できれば,取水は可能である。しかし,取水口前に堆砂が発生すると,取 水時に砂が流入する可能性がある。

北海道鵡川の川東頭首工において,左岸沿いの寄洲が徐々に下流へ移動して,図-4に見られる ように,堆砂域の先端部が左岸取水口前に迫ってきている。高井によれば⁵⁾,上流からの砂礫堆の 移動が原因である。

3 問題発生の主な要因

(1) 計画河床高との関係

我が国の多くの河川で,昭和30~40年代に大量の河床砂利の採取が実施されたり,河川改修工 事に伴った河道掘削が実施されたりして,河床低下が進行した。木や石を建設材料とする古くから の堰であれば,このような状況で洪水に見舞われれば,直ちに堰本体の破壊につながるが,頑丈な コンクリート製の堰に改築されていた場合は,堰本体は破壊されずに,堰下流の河床洗掘が進行し, 護岸や橋脚の基礎部周辺河床の洗掘によって大きな災害につながる。堰の取付け部河岸の侵食によ って堤防決壊に至った例もある。昭和49年に発生した宿河原堰(東京都多摩川)左岸の堤防決壊 はその典型的な例として大々的に取り上げられた。

また,治水安全度を高めるため,基本高水流量を大きくし,ダム貯水によって洪水流量の低減を 図る一方で,河道における洪水流下能力を高める必要もあり,河道改修計画の改訂が進められた。

図 - 5 河川構造令にしたがった頭首工の固定部天端高と計画河床高との関係

そのさい,河道を横断する固定構造物である堰体は,洪水流下の妨げになることから,堰天端の切 り下げ要求が強まった。

このような背景のもと,昭和 51 年に施行された「河川管理施設等構造令(以下,河川構造令という)」において,「流下断面との関係」として,次のような条項が設けられた。

「第37条 可動堰の可動部以外の部分及び固定堰は,流下断面(計画横断形が定められている場合には,当該計画横断形に係る流下断面を含む。)内に設けてはならない。」

この条項にしたがった具体的な内容は, 現状や計画の河床高より高い天端の固定堰によって取 水位を堰上げる固定堰の建設は認められず, 堰は洪水時の流下を阻害しない全面可動堰が原則に なるとともに,可動堰敷高(ゲート戸当り部天端)は,現況より低いことが多い計画河床高に一致 させて設計・施工することになる。現況河床と計画河床との関係,および河川構造令にしたがって 建設される堰天端高との関係は,図-5に示したとおりである。堰の建設にさいして,堰の上下流 区間が改修計画に従って同時に河道改修工事が実施されるが,その区間延長は短いことが多い。そ してその上下流は現況河道のまま残される。将来的には改修計画によって,河床掘削を伴った河道 改修工事が実施される予定であるが,それまでは,堰のごく近くが河床掘削されるだけである。

このような状況で,洪水に見舞われると,短い区間延長に過ぎない掘削河床部分に堆砂して,ほ ぼもとの河床高に復元してしまう。三輪は,多数の頭首工について,このようなメカニズムによっ て発生した堆砂トラブルの実態を調査解析し,少ないながらも堆砂トラブルが発生していない頭首 工事例を参考にし,また小型模型水路実験を試みて,堆砂の予防対策を提言していた。しかし,そ の後も適切な対策がとられないまま,頭首工の新設が進められ,新たなトラブル事例が発生してい る。従来の事例では,その後も,堆砂トラブルに悩まされ続けている。

新たな事例の調査解析を進めるとともに,従来取り上げた事例のその後の対応を調査し,より適切な対策提言に結びつけていきたい。

(2) 砂礫堆の形成と移動との関係

頭首工周辺の堆砂高と形 状は,全体的な河床の高さ とその区間で形成されてい る砂礫堆との位置関係によ って決まる。砂礫堆は,図 -6に見られるように,直 線河道においても形成され る河床形態であって,平水 時のみお筋は,淵と瀬が交 互に連続し,河道幅一杯に 左右に大きく蛇行する。

直線河道においては,砂 礫堆はほぼその形状を保持 したまま,洪水のたびに下 流へ移動するので,頭首工 と砂礫堆の位置関係も順次 変化し,堰周辺の堆砂形状 も変化する。上流部にあっ た寄洲部が,洪水後に,下 流に移動してきて取水口を 閉塞するような事態も発生 する。

直線水路に形成される砂 礫堆の長さに見合うような 波長で左右に蛇行させ,限 界蛇行角以上に屈折させた 水路では,砂礫堆の移動を

図 - 6 直線水路の 砂礫堆形成 (停水時に白色絵の具 溶液を注入。B=20cm, Q=0.6 L/s, I=1/70, dm = 0.8mm)

停水中 白色絵の具注入

通水中 パンチくず流し撮り

図 - 7 蛇行水路(波長:160cm,蛇行角:25°)に 設置の堰上堆砂と表面流況との関係 (初期砂均し砂床高=堰天端高, 水理諸量は直線水路と同じ)

抑えることができる⁶⁾。図-7の水路では,砂礫堆の移動が抑えられている。河床形状は,凹岸 底部から凸岸頂部にかけての河岸に沿って「淵」が形成され,みお筋が「瀬」を経て,対岸下流の 淵に移っていることが認められる。砂礫堆の移動が抑えられているので,左右交互の淵は常に安定 した地点に現れる。

このようにみお筋が安定した河道区間において,屈曲部に挟まれた直線区間に堰を設置したところ,初期砂均し高(=平均河床高)と堰天端高が等しい場合でも,河道中央部から左岸側に広く堆砂してしまうことが分かる。図-8(2)は,そのときのクローズアップ写真である。

河川構造令にしたがって,現況より低い計画河床高に合わせて堰の天端高を設定した場合が,図 - 8(1)であり,右岸沿いに淵部を除いて広く堰上に堆砂が発生している。この堆砂が,現在多

(1) 初期砂床高 天端高+3mm

(2) 初期砂床高天端高に合致

(3)初期砂床高堰 上流:堰天端高 下流:堰天端高 - 3mm

図 - 8 堰天端高と砂床高の高低が堰上の堆砂形状に及ぼす影響

くの堰で悩まされている形状である。堰下流の河床高を堰天端高より低く均して,通水した結果が 図-8(3)である。堰下流河床の局所洗掘の深さと範囲が大きくなっていることが分かる。その 代わりに,堰上への堆砂は左岸寄りの狭い範囲に減少している。

砂礫堆との位置関係が変化すれば, 堰上の堆砂高さや形状も変化する。現在,水路実験による検討を進めているところである。

4 今後の課題

河川構造令が施工されてすでに 30 年が経過した。現況河床より低い計画河床高に堰天端高を合 致させて建設され,堆砂トラブルに悩まされ続けている頭首工も数多くある。その一方で,少ない ながらも,兵庫県加古川大堰や岡山県坂根合同堰など,大きな問題を生じていない頭首工もある。 問題のある頭首工では,この間,堆砂によるトラブルをできるだけ軽減するため,様々な苦労を強 いられてきた。その実態を再調査するとともに,あまり問題を生じていない頭首工について,その 理由の調査研究を進める必要がある。

本研究を進めることによって,既設の頭首工における対応策と新設のさいに留意すべき問題点に ついて明らかにしていきたい。

[謝辞]

現地調査にあたって,岡山県・鶴海敏久氏や,北海道大雪,当麻,東和,深川,鵡川の各土地改 良区の方々に資料提供や現地説明にさいしてお世話になりました。水路実験では,三輪研究室の学 生・院生の協力を得ました。記してお礼申し上げます。

[参考文献]

1) 三輪 弌:将来計画河床高に敷高を合わせた頭首工の河床掘削計画 - S 用水 O 頭首工の事例 - ,水と土 48, pp.39-44, 1982

2) 三輪 弌:模型水路実験による岡島頭首工上下流の河床掘削計画の検討,水理講演会論文集 33, pp.391-396, 1989

3) 三輪 弌:取水堰直下の堆砂のゲート操作によるフラッシュ過程,水工学論文集 34, pp.247-252, 1990
4) 三輪 弌:現河床より低い敷高の頭首工における堆砂の予防対策,農土論集 153, pp.93-100, 1991
5) 高井和彦,三輪 弌:頭首工下流の河床洗掘による災害の防止対策の現状,H.19 応用水理研究部会講演集,農業農村工学会,(印刷中),2007

6) 木下良作,三輪 弌:砂礫堆の位置が安定化する流路形状,新砂防94, pp.12-17, 1974

Modeling of Water and Nitrogen Cycle in a Non-Isothermal Crop Field Soil

Violeta S. Fujiwara, Junichiro Takeuchi, Toshihiko Kawachi Graduate School of Agricultural Science, Kyoto University

1 Introduction

Agriculture is probably the most important activity of man that affects the quality of groundwater, caused mainly by the chemical fertilizer application to farmlands. The contaminant that is most frequently detected in groundwater is nitrogen in the form of nitrate (NO_3^-)(Bonilla *et al.*, 1999). It is known that excess of nitrate in the drinking water can cause several problems to the health of population. A simulation model of the nitrate-nitrogen fate in the soil is an important tool that can be used to formulate optimizated fertilizer application strategies to minimize nitrate leaching to groundwater.

Water content and temperature are the most important environmental factors that affect microbial processes in soils - such as nitrification, C decomposition, N and C mineralization - resulting in a considerable influence in nitrogen transformations and transport (Rodrigo *et al.*, 1997). Thus, the simulation and right estimation of the soil temperature and moisture play an important role on this study. The present model simulates water and nitrogen cycle in a one-dimensional non-isothermal crop field soil.

2 Simulation model 2.1 Model structure

The simulation model is composed by three submodels, in which equations for water and thermal energy transport and nitrogen transformations in the soil are solved numerically by discretization based on Finite Volume Method.

2.2 Liquid water mass balance equation

The equation that comes from the combination of the extended Darcy's law and continuity equation, Richards equation, is employed to describe water flow in saturated-unsaturated soil.

$$(C_{\rm w}(\psi) + S_{\rm s})\frac{\partial\psi}{\partial t} = -\frac{\partial}{\partial x} \Big(-K(\psi)\frac{\partial h}{\partial x} \Big) - t_{\rm r}(x)$$
(1)

with

$$S_{\rm s} = \rho_{\rm w} g \left(\beta_{\rm s} \frac{\theta}{\theta_{\rm s}} + \theta \beta_{\rm w} \right) \tag{2}$$

$$C_{\rm w}(\psi) = \frac{d\theta}{d\psi} \tag{3}$$

where ρ_w is the water density, C_w is the specific moisture capacity, S_s is the specific storage, ψ is the soil water pressure head, t is the time, g is the gravity acceleration, θ is the volumetric water content, θ_s is the saturated water content, β_s and β_w are the coefficients of soil and water compressibility, respectively, K is the unsaturated hydraulic conductivity, which is assumed to be isotropic, h(= $\psi + x)$ is the hydraulic head, t_r is the root water extraction rate and x is the vertical coordinate (positive upward).

The van Genuchten-Mualem type models are adopted to represent the hydraulic conductivity in both saturated and unsaturated soils, relating K, ψ and θ .

$$K(\psi) = \begin{cases} K_{\rm s} K_{\rm r}(\psi) & (\psi < 0) \\ K_{\rm s} & (\psi \ge 0) \end{cases}$$
(4)

where K_s is the saturated hydraulic conductivity, and K_r is the relative hydraulic conductivity function. The relative hydraulic conductivity function by Mualem is written as

$$K_{\rm r}(\psi) = S_{\rm e}^{\frac{1}{2}} \left[1 - \left(1 - S_{\rm e}^{\frac{1}{m}} \right)^m \right]^2 \qquad (5)$$

with

$$S_{\rm e} = \frac{\theta - \theta_{\rm r}}{\theta_{\rm s} - \theta_{\rm r}} = \frac{1}{(1 + |\alpha\psi|^n)^m} \tag{6}$$

where S_e is the effective saturation, θ_r is the residual water content, and α , n, m are empirical shape parameters, and n is restricted as $m = 1 - \frac{1}{n}$.

The upper boundary condition (Neumann boundary condition) is determined by the flux of evaporation rate E and rainfall rate r. Potential evaporation E_p is calculated firstly, which is obtained from the potential evapotranspiration rate E_p^T calculated by the Penman-Monteith equation (Allen *et al.*, 1998). To obtain actual evapotranspiration rate E_c^T , E_p^T is multiplied by a reduction function $\epsilon(\psi)$, which depends on the water availability of the soil, and according to that, limits the evapotranspiration rate from soil. E_c^T is then partitioned into E and the crop transpiration T_c , using the leaf area index (LAI) as a function of crop development stage (Belmans et al., 1983):

$$E = \exp(-0.6I_{\rm L})E_{\rm c}^{\rm T} \tag{7}$$

where $I_{\rm L}$ is the leaf area index. And then,

$$T_{\rm c} = E_{\rm c}^{\rm T} - E \tag{8}$$

Nearly all the water taken up by the plant's root is lost by transpiration and only a tiny fraction is used within the plant (Allen et al., 1998), so the root water extraction rate t_r can be calculated distributing the $T_{\rm c}$ over the rooting depth $x_{\rm r}$

$$T_{\rm c} = \frac{t_{\rm r}}{x_{\rm r}} \tag{9}$$

At the lower boundary condition, Dirichlet boundary condition is defined ($\psi = 0$ at groundwater level), and for the initial condition, the pressure head is given.

2.3 Energy balance equation

The energy balance equation over a representative control volume can be expressed as (Kondo and Saigusa, 1994):

$$C_{\rm h}(\theta)\frac{\partial T}{\partial t} = -\frac{\partial}{\partial x} \left(-\lambda \frac{\partial T}{\partial x} \right) \qquad (10)$$

with

$$C_{\rm h}(\theta) = (1 - \theta_{\rm s})c_{\rm s} + \theta c_{\rm w} \tag{11}$$

where C_h is the volumetric heat capacity, T is the soil temperature, λ is the thermal conductivity of the soil, c_s and c_w are the heat capacity of soil and water particles, respectively. Here, λ is obtained from an empirical equation, $\lambda = 0.251 + 0.5\theta^{1/3}$.

For the initial condition, T_0 is given and for the upper boundary condition (at soil surface), Neumann boundary condition is assumed:

$$-\lambda \frac{\partial T}{\partial x} = -[R_{\rm ns} + L^{\downarrow} - \sigma T_{\rm s}^4 - H - \iota E], \quad (12)$$

-(1)

with

$$R_{\rm ns} = (1 - a_{\rm l})S^{\downarrow} \tag{13}$$

(12)

$$H = c_{\rm a}\rho_{\rm a}C_{\rm H}u(T_{\rm s} - T_{\rm a}) \tag{14}$$

where R_{ns} is the net shortwave radiation, a_1 is the albedo of the ground, S^{\downarrow} is the solar radiation, L^{\downarrow} is the atmospheric radiation, σ is the Stefan-Boltzmann constant, T_s is the surface soil temperature, H is the sensible heat flux from the soil surface to the atmosphere, ι is the latent heat of vaporization, $C_{\rm H}$ is the bulk transfer coefficient for the sensible heat flux, c_a is the air specific heat, ρ_a is the air density, u is the wind velocity and T_a is the air temperature.

At the lower boundary condition, Dirichlet boundary condition was adopted.

2.4 Nitrogen balance equations

The dynamics of nitrogen in the soil is determined by different processes, which can be widely classified as: input, transformations, and output (Figure 1). Nitrogen can enter the soil environment through atmospheric deposition (such as rain), fertilizer application, or organic matter addition. The transformations of nitrogen in the soil are mainly caused by reactions such as mineralization, humification and immobilization. Finally, nitrogen can leave the soil environment through denitrification, plant uptake or leaching.

It was considered 6 forms of nitrogen: ammonia (A), nitrate (N), humus (H), compost fertilizer (C), chemical fertilizer (F) and plants' residue (P), which is also used as one of the fertilizing method. Each form of the nitrogen interact themselves, as shown in Figure 1.

Figure 1: Nitrogen cycle in the soil

For ammonia-N and nitrate-N, advectiondiffusion equation is used, because they are dissolved in water, but for the nitrogen in the form of humus, compost, plants' residue and chemical fertilizer, advection and diffusion are not considered. Each of the terms appearing in Eq. (18), Eq. (20)and Eq. (21) to (24) will be defined in the next section.

- Ammonia

Positively charged ammonium ion is adsorbed to negatively charged soil fraction, and because

of this, a retardation factor of the ammonium ion transport was included in the equation. Considering that the diluted in water and also the adsorbed amount of ammonia can participate in the reactions, θ and R_d are multiplied to each of the source terms that comes from ammonia.

$$\theta R_{\rm d} \frac{\partial N^{\rm A}}{\partial t} = \frac{\partial}{\partial x} \left(\theta D \frac{\partial N^{\rm A}}{\partial x} \right) - V \frac{\partial N^{\rm A}}{\partial x} + S_1 \quad (15)$$

with

$$R_{\rm d} = 1 + \frac{(1-n)}{\theta} \rho_{\rm s} K_{\rm d} \tag{16}$$

$$V = -K(\psi)\frac{\partial h}{\partial x} \tag{17}$$

$$S_{1} = d_{i}^{F \to A} + m^{H \to A} + m^{C \to A} - \theta R_{d} n^{A \to N}$$
$$-\theta R_{d} i^{A \to H} - u^{A \to up}$$
(18)

where $N^{\rm A}$ is the ammonia-N concentration, $R_{\rm d}$ is the retardation factor, D is the dispersion coefficient, V is the Darcy's water velocity, S_1 is the source term, n is the porosity of the soil, $\rho_{\rm s}$ is the soil particle density, $K_{\rm d}$ is the distribution coefficient, $d_{\rm i}^{\rm F\to A}$ is the dissolution rate of ammonia-N from chemical fertilizer, $m^{\rm H\to A}$ is the mineralization rate of ammonia-N from humus-N, $m^{\rm C\to A}$ is the mineralization rate of ammonia-N from compost-N, $n^{\rm A\to N}$ is the nitrification rate of ammonia-N, $u^{\rm A\to H}$ is the immobilization rate of ammonia-N, $u^{\rm A\to H}$ is the uptake rate of ammonia-N by plants.

- Nitrate

Negatively charged nitrate ion is difficult to be adsorbed to negatively charged soil fraction, so general transport equation is used. θ is multiplied to the source terms originated from nitrate, considering the dissolution in water.

$$\theta \frac{\partial N^{\mathrm{N}}}{\partial t} = \frac{\partial}{\partial x} \left(\theta D \frac{\partial N^{\mathrm{N}}}{\partial x} \right) - V \frac{\partial N^{\mathrm{N}}}{\partial x} + S_2 \quad (19)$$

with

$$S_2 = r^{\mathrm{N}} + \theta R_{\mathrm{d}} n^{\mathrm{A} \to \mathrm{N}} - \theta i^{\mathrm{N} \to \mathrm{H}} - u^{\mathrm{N} \to \mathrm{up}} - \theta d_{\mathrm{e}}$$
(20)

where N^{N} is the nitrate-N concentration, S_2 is the source term, $i^{N \to H}$ is the immobilization rate of nitrate-N, $u^{N \to up}$ is the uptake rate of nitrate-N by plants, d_e is the denitrification rate of nitrate-N and r^{N} is the rain induced nitrate-N.

- Humus, compost, plants and chemical fertilizers

$$\frac{\partial N^{\rm H}}{\partial t} = h^{\rm C \to \rm H} + h^{\rm P \to \rm H} + \theta R_{\rm d} i^{\rm A \to \rm H} + \theta i^{\rm N \to \rm H} - m^{\rm H \to \rm A}$$
(21)

$$\frac{\partial N^{\rm C}}{\partial t} = -h^{\rm C \to \rm H} - m^{\rm C \to \rm A} \tag{22}$$

$$\frac{\partial N^{\mathbf{P}}}{\partial t} = -h^{\mathbf{P} \to \mathbf{H}} \tag{23}$$

$$\frac{\partial N^{\rm F}}{\partial t} = a_{\rm F} - d_{\rm i}^{\rm F \to A} \tag{24}$$

where $N^{\rm H}$, $N^{\rm C}$, $N^{\rm P}$ and $N^{\rm F}$ are the concentrations of nitrogens derived from humus, compost, plants' residue and chemical fertilizer, respectively, $a_{\rm F}$ is the application rate of chemical fertilizer, $h^{\rm C\to H}$ is the humification rate of compost-N, $h^{\rm P\to H}$ is the humification rate of plants-N.

For the initial condition, $N^{\rm A}$, $N^{\rm N}$, $N^{\rm H}$, $N^{\rm C}$, $N^{\rm P}$ and $N^{\rm F}$ are given. Bottom boundary was considered as Neumann boundary with null variation of concentration.

2.4.1 Reaction factors of nitrogen transformations

All the reaction formulas described in this section were derived from Kiho and Islam (1995). Soil temperature function is defined as:

$$\omega_{\rm T}(T) = r_{\rm t}^{(T-T_{\rm b})/10}$$
(25)

where $\omega_{\rm T}$ is the soil temperature function, $r_{\rm t}$ is the temperature reaction factor and $T_{\rm b}$ is the standard temperature of soil.

For the soil moisture function, the general equation (Eq. (26)) is used for most of the reactions, except for the dissolution of chemical fertilizer and denitrification process. In those two processes, the reaction is limited when soil moisture is less than a certain amount.

$$\omega_{\omega}(\theta) = \begin{cases} \theta/\theta_{\rm FC} & \text{if } \theta \le \theta_{\rm FC} \\ \\ \theta_{\rm FC}/\theta & \text{if } \theta > \theta_{\rm FC} \end{cases}$$
(26)

$$\omega_{\omega}^{\rm di}(\theta) = \begin{cases} \frac{(\theta - 0.6\theta_{\rm FC})}{(\theta_s - 0.6\theta_{\rm FC})} & \text{if } \theta > 0.6\theta_{\rm FC} \\ 0 & \text{if } \theta \le 0.6\theta_{\rm FC} \end{cases}$$
(27)

$$\omega_{\omega}^{\rm de}(\theta) = \begin{cases} \frac{(\theta - 0.9\theta_{\rm FC})}{(\theta_s - 0.9\theta_{\rm FC})} & \text{if } \theta \ge 0.9\theta_{\rm FC} \\ 0 & \text{if } \theta < 0.9\theta_{\rm FC} \end{cases}$$
(28)

where ω_{ω} is the general form soil moisture function, θ_{FC} is the field capacity, $\omega_{\omega}^{\text{di}}$ and $\omega_{\omega}^{\text{de}}$ are the soil moisture functions for dissolution and denitrifaction, respectively.

- Mineralization and humification of compost-N

Mineralization, humification and immobilization of compost and plants (plant residue and plowed-in plants) are intimately related to the ratio between existing carbon and nitrogen ($R_{\rm CN}$) in the soil. Therefore, the temporary quantities of nitrogen and carbon ($T_{\rm N}$ and $T_{\rm C}$, respectively) that is generated by decomposition of composts and plants' residue in the soil must be known.

$$T_{\rm N}^* = k_{\rm N} N^* \omega_{\rm T}(T) \omega_\omega(\theta), \qquad (29)$$

$$T_{\rm C}^* = r_{\rm C} R_{\rm CN}^* T_{\rm N}^* \tag{30}$$

where $k_{\rm N}$ is the decomposition rate factor of nitrogen derived from compost and plants residue and $r_{\rm C}$ is the residual factor for carbon derived from compost and plants residue. Here, the superscript * can be substituted by C or P, meaning it is relative to compost or plants' residue, respectively. Eq. (30) can be rewritten in the form $T_{\rm C}^*/T_{\rm N}^* = r_{\rm C}R_{\rm CN}^*$.

The humification of compost-N occurs according to $R_{\rm CN}^{\rm H}$, but due to the fact that the value of $T_{\rm C}/T_{\rm N}$ of compost is lower than that for humus, a certain quantity of $T_{\rm N}^{\rm C}$ will be left over, not becoming humus. Humification occurs as

$$h^{C \to H} = \frac{T_{C}^{C}}{R_{CN}^{H}}$$

$$= N^{C} d_{C} R_{CN}^{C} r_{C} \omega_{T}(T) \omega_{\omega}(\theta)$$
(31)

where $d_{\rm C}$ is the decomposition rate factor of compost. The amount of left-over compost-N that did not become humus is transformed into ammonia-N, by the reaction of mineralization,

$$m^{C \to A} = T_{N}^{C} - h^{C \to H}$$

= $N^{C} d_{C} \omega_{T}(T) \omega_{\omega}(\theta) - h^{C \to H}$ (32)

- Humification of plants-N

The value of $T_{\rm C}/T_{\rm N}$ for plants-N is higher than the $R_{\rm CN}^{\rm H}$. So, all the $T_{\rm N}$ coming from plants-N are transformed into humus-N.

$$h^{\mathbf{P}\to\mathbf{H}} = T_{\mathbf{N}}^{\mathbf{P}} = N^{\mathbf{P}} H_{\mathbf{P}} \omega_{\mathbf{T}}(T) \omega_{\omega}(\theta)$$
(33)

where H_P is the plants-N humification rate factor. In this process, there will not be leftover of plants-N, but there will be leftover of T_C . This surplus of C in the soil will occasionate immobilization reactions.

- Mineralization of humus-N

Humus-N is mineralized and it is transformed to ammonia-N following the equation

$$m^{\mathrm{H}\to\mathrm{A}} = N^{\mathrm{H}} m_{\mathrm{p}} M_{\mathrm{H}} \omega_{\mathrm{T}}(T) \omega_{\omega}(\theta) \qquad (34)$$

where m_p is the humus-N mineralization possibility factor and M_H is the mineralization rate factor of humus-N.

- Dissolution of chemical fertilizer

Assuming that ammonia fertilizer is used, only the dissolution of ammonia-N is considered.

$$d_{i}^{F \to A} = N^{F} f_{a} D_{F} \omega_{T}(T) \omega_{\omega}^{di}(\theta)$$
(35)

where f_a is the percentage of ammonia-N content of the chemical fertilizer and D_F is the dissolution factor of chemical fertilizer.

- Addition of rain induced nitrogen

The nitrogen contained in rain is mainly in form of nitrate-N, and it can be estimated by

$$r^{\rm N} = C_{\rm r}(r - r_{\rm o}) \tag{36}$$

where $C_{\rm r}$ is the average concentration of nitrate-N in rain, $r_{\rm o}$ is the surface runoff.

- Nitrification

Nitrification of ammonia-N occurs as

$$n^{\mathbf{A}\to\mathbf{N}} = N^{\mathbf{A}} N_{\mathbf{n}} \omega_{\mathbf{T}}(T) \omega_{\omega}(\theta) \tag{37}$$

where $N_{\rm n}$ is the nitrification rate factor under standard soil temperature.

- Uptake by plants

The cumulative nitrogen uptake by plants is described by a logistic curve, following the equation below

$$U_{\rm cum}(t) = \frac{U_{\rm max}}{1 + \exp\{\gamma((t - t_{\rm p}) - \frac{n_{\rm d}}{2})\}}$$
(38)

where $U_{\rm cum}$ is the cumulative nitrogen uptake by plants, $U_{\rm max}$ is the asymptotic limit of uptake by plants, $t_{\rm p}$ is the time of transplanting, $n_{\rm d}$ is the number of days during a cropping period, and γ is a coefficient which is defined supposing that 98% of nitrogen nutrients is absorbed at the time of 3/4 of the cropping period, calculated as $\gamma = -15.567/n_{\rm d}$. Based on the logistic function of Eq. (38), the amount of daily nutritional requirement for crops is estimated as follows

$$U_{\rm r}(t) = \frac{dU_{\rm cum}}{dt} = \frac{-\gamma \exp\{\gamma((t-t_{\rm p}) - \frac{n_{\rm d}}{2})\}}{\left(1 + \exp\{\gamma((t-t_{\rm p}) - \frac{n_{\rm d}}{2})\}\right)^2}$$
(39)

and

$$U_{\mathbf{r}}(t) = u^{\mathbf{A} \to \mathbf{u}\mathbf{p}} + u^{\mathbf{N} \to \mathbf{u}\mathbf{p}} \tag{40}$$

where U_r is the daily nutritional requirement for crops. Nitrogen uptake by plants depends proportionally on the amount of ammonia-N and nitrate-N available in the soil.

$$u^{\mathbf{A} \to \mathbf{u}\mathbf{p}} N^{\mathbf{N}} = u^{\mathbf{N} \to \mathbf{u}\mathbf{p}} N^{\mathbf{A}} \tag{41}$$

- Immobilization

The nitrogen in the soil, in form of ammonia or nitrate, will react with the excess of carbon in the soil (generated by the process of humification of plants' residue). The total amount of nitrogen that will be immobilized is

$$i^{\mathrm{N}} = (T_{\mathrm{C}} - R_{\mathrm{CN}}^{H} T_{\mathrm{N}}) / R_{\mathrm{CN}}^{\mathrm{H}}$$
$$= h^{\mathrm{P} \to \mathrm{H}} \left(\frac{r_{\mathrm{C}} R_{\mathrm{CN}}^{\mathrm{P}}}{R_{\mathrm{CN}}^{\mathrm{H}}} - 1 \right)$$
(42)

And the immobilization rate of ammonia-N and nitrogen-N is described by the equations below:

$$i^{\mathbf{A}\to\mathbf{H}} = \frac{i^{\mathbf{N}}N^{\mathbf{A}}}{N^{\mathbf{A}} + N^{\mathbf{N}}} \tag{43}$$

and

$$i^{\mathbf{N}\to\mathbf{H}} = i^{\mathbf{N}} - i^{\mathbf{A}\to\mathbf{H}} \tag{44}$$

- Denitrification

Due to anaerobic respiration of soil bacteria, soil nitrate-N is reduced to gaseous nitrogen forms such as N_2O and N_2 .

$$d_{\rm e} = N^{\rm N} D_{\rm R} \omega_{\rm T}(T) \omega_{\omega}^{\rm de}(\theta) \tag{45}$$

where $D_{\rm R}$ is the denitrification rate factor.

3 Application

The above mentioned model is applied to onedimensional hypothetical soil, with depth of 100 cm and groundwater level at the bottom. It is assumed that the soil characteristic is homogeneous in the whole domain.

Meteorological data of a experimental site in Miyoshi-town, Aichi prefecture (E137°04'28" -N35°05'22") were used. For the liquid water mass balance equation and energy balance equation, hourly evapotranspiration was calculated. The data required were: air temperature, precipitation, solar radiation, relative humidity of air and wind speed, which were collected from 2006/03/22 to 2006/06/09. The atmospheric radiation, needed to calculate the energy balance at soil surface, was based on the method presented by Prata (1996).

A hypothetical crop was considered, with crop period of 80 days, maximum rooting depth of 40 cm, crop height of 30 cm, LAI of 2.7 and albedo of the soil surface of 0.25. The soil properties parameters used for soil-water simulation are shown in Table 1. Those values were obtained from Takeshita and Kohno (1993), and it is an example of volcanic ash soil (*andosol*). For the nitrogen reaction factors, it was used the same values as presented by Kiho and Islam (1995). Compost of 90 kg ha⁻¹ and chemical fertilizer of 72 kg ha⁻¹ was applied in the first day.

Parameter	Value
$\beta_{\rm s}[{\rm cm}^2~{\rm N}^{-1}]$	$2.0 imes 10^{-4}$
$\beta_{\rm w}[{ m cm}^2~{ m N}^{-1}]$	4.4×10^{-6}
$\theta_{\rm s}[{\rm cm}^3{\rm cm}^{-3}]$	0.4
$\theta_{\rm r}[{\rm cm}^3{\rm cm}^{-3}]$	0.1
α[-]	0.0268
<i>n</i> [-]	3.249
$K_{\rm s}$ [cm s ⁻¹]	$7.0 imes 10^{-4}$

Table 1: Soil parameters

3.1 Results

The resulting volumetric water content and temperature of the soil in different depths are shown in Figures 2 and 3, respectively. The water content varies more near the soil surface, due to the effect of rain, evaporation and the existence of plants, which extract water from the depths where there are roots. It can be seen that the variation of temperature near the soil surface is also considerably large, and it becomes smaller in deeper soil depths.

In Figure 4, concentration of nitrate-N in different soil depths is presented. Nutrients are uptaken by crop mainly during the growing season, which corresponds to the middle part of the cropping period. Thus, in the soil depths with roots, the nitrate-N concentration drops to zero, which could suggest that the nutrients for the crop are not sufficient. The cumulative nitrate-N leaching losses during the cropping period is shown in Figure 5.

Figure 2: Volumetric water content of soil

Figure 3: Soil temperature

Figure 4: Nitrate-N concentration

Figure 5: Cumulative nitrate-N leaching

4 Conclusions

A model for simulating water and nitrogen cycle in a non-isothermal soil was presented. In the present simulation, parameter values obtained by different authors in different locations were used, so it is desirable to obtain measured local data for the next step of the study. A more realistic simulation of a specific crop, with real number of cropping days and scheduling timing for fertilizer application must be done. Furthermore, this model should be coupled with an optimization problem, so that the best solution to minimize nitrogen leaching problem can be found.

References

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998), Crop evapotranspiration, Guidelines for computing crop water requirements. *Irrigation and Drainage Paper 56*, FAO, Rome, Italy, 300 pp.

Belmans, C., Wesseling, J. G., Feddes, R. A. (1983), Simulation model of the water balance of a cropped soil:

SWATRE. J. Hydrol., 63, 271-286.

Bonilla, C. A., Muñoz, J. F., and Vauclin, M. (1999), Opus simulation of water dynamics and nitrate transport in a field pot, *Ecol. Model.*, 122, 69-80.

Kiho, N. and Islam, T. (1995), Estimation model of nitrate leaching to shallow groundwater aquifer, *Annual Rep. Kyushu Agri. Exper. Stat.*, 49-63 (in Japanese).

Kondo, J. and Saigusa, N. (1994), Modelling the evaporation from bare soil with a formula for vaporization in the soil pores, *J. Meteorol. Soc. Japan*, 72(2), 413-421. Prata, A. J. (1996), A new long-wave formula for estimating downward clear-sky radiation at the surface, *Q. J. R. Meteorol. Soc.*, 122, 1127-1151.

Rodrigo, A., Recous, S., Neel, C., Mary, B. (1997), Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models, *Ecol. Model.*, 102, 325-339.

Takeshita, Y. and Kohno, I. (1993), A method to predict hydraulic properties for unsaturated soils and its application to observed data, *Ground Engineering, Journal of Chugoku Branch, JGS*, 11(1), 95-113 (in Japanese).

高知大学農学部流域環境工学コースと愛媛大学農学部地域環境工学コースの教育連携

愛媛大学農学部 藤原正幸

高知大学農学部 伴 道一

1. はじめに

高知大学農学部流域環境工学コースと愛媛大学農学部地域環境工学コースでは、これまで連合大学院を通じての教育研究交流は行われてきたが、修士課程の学生および学部生を対象とする組織的な教育交流は行ってこなかった.大学間で教育連携を行うことは、カリキュラムの充実とともに、交流を通して学生の勉学に対するモチベーションの高まりが期待できる.とくに高知大学と愛媛大学は近接しながらもそれぞれの異なった文化と歴史をもっており、その中で現在育っている学生が異文化と接することで、視野を広げるきっかけとなり、その結果、学んでいる対象を多面的な視点で眺める能力が涵養できる.

高知大学の位置する物部川流域の香長平野は3,000mm 近くの年降水量がある一方で,愛 媛大学の位置する重信川流域の道後平野ではその半分にも満たない.したがって,どちらかと いうと香長平野では治水,道後平野では利水から河川を考えるという視点に立つ傾向にあった. このように自然環境が対照的な地域に立地する大学の連携は,特にフィールドワーク系の分野 にとっては,非常に幅の広い魅力的な教育メニューを整備することができるというメリットが付加 される.

このような背景に基づき,高知大学と愛媛大学の両コースでは平成16年度より協議を重ね, 平成18年度から本格的に連携教育をはじめたので,本報でその内容と評価,今後の課題に ついて報告する.

2. 連携内容

2.1 大学院合同授業

合同授業は,両大学の大学院生が一堂に会して授業を受ける形式である.両大学ともそれ ぞれ4名の修士課程1年生が受講した.授業は2回に分けて実施され,前半は愛媛大学,後 半は高知大学で行われた.そのスケジュールを表1に示す.なお,本授業により,愛媛大学で は「水資源・環境水工学」,高知大学では「海洋環境工学特論」の単位を取得することが出来 る.

月日	時間	担当者	内容
	10:00-10:20	藤原正幸	趣旨説明&自己紹介
9	10:20-11:05	野木明博	河川の近自然化について
	11:10-11:55	中村真由子	重信川の泉について
л 16	11:55-12:10	藤原正幸	実習内容の説明
н П	13:00-15:00	藤原正幸	重信川流域の泉の見学(赤坂泉, 三ヶ村泉, 柳原泉, 森ノ木泉)
15.00-17.00		藤原正幸	龍沢泉の湧水量観測(電磁流速計による1点法と3点法での
	15.00 17.00	伴 道一	計測と浮子による観測)
2	9:00-12:00	藤原正幸	観測データの整理

表1 大学院合同授業のスケジュール

月	13:00-13:40	玉田 徹	親水性有害有機物質の廃棄物からの挙動に関する研究
17	13:40-14:20	稲森 奨	オキシデーションディッチによる下水からの効率的窒素除去法の思惑
日			
	14:30-15:10	稻田健太	スギ人工林における蒸発散量とCO ₂ フラックスの測定
	15:10-15:50	原田 亘	汎用農地における土壌改良材を利用した土壌物理性の改善
2	10:00-12:00	伴 道一	人と河川の関わり,河川の地理のはなし
月	13:00-14:20	澄田和矢	河川の治水について,治水技術・工法の実際
22	14:40-16:00	伴 道一	水利用の高度化と河川環境について
日	16:10-17:00	近松栄信	物部川の抱える諸問題について
2	9:30-12:30	笹原克夫	物部村別府崩壊現場見学
月	13.30-17.00	伴道一	見学(槇山川,永瀬ダム,永瀬発電所,杉田ダム,合同堰,統
23	10.00 17.00		合堰,物部川漁協,三宝山展望台)
日	17:30-18:00	伴 道一	授業総括

前半の湧水量観測のグループ作業では,愛媛大学と高知大学の学生を混在させることにより,コミュニケーション能力や計画的に作業をすすめる能力の獲得を目指した.また,後半は,物部川の源流から下流までを対象として,治山,長期濁水問題,水利システム,漁場環境などの側面から流域環境を多面的にかつ俯瞰的に考える授業を意図した.

2.1.1 湧水量観測

愛媛大学の位置する 道後平野は,石手川及 び重信川によって形成 された扇状地・沖積平 野であり,そのため,特 に重信川中流部に泉 が多い.今回観測対象 とした龍沢泉は,平成 13~15年にかけて改 修された泉である.平 面的な大きさは最大幅 7m,長さ30m程度であ る(**写真1**).今回はこ

写真1 龍沢泉

写真2 観測状況

表2 各種観測手法による 湧水量の観測結果

観測方法	流量(m ³ /s)
浮子	0.21
1 点法	0.123
2 点法	0.117
3 点法	0.119

の泉に接続されている水路内で,写真1の奥に写っている橋の位置で流量観測を行った.写真2は作業風景の一コマである.

測定地点の水路の水面幅は 1.6m, 底面幅は 1.2m で, 台形状の断面をしており, 底及び側壁は 20cm 程度の玉石 で造られている.水路を水平方向に 5 断面に分割して, そ

れぞれの断面において、1 点法、2 点法、3 点法で流速を測定した.また、浮子による測定(10m 流下する時間を測定)も行った.なお、水深は約 50cm であった.それぞれの流速測定から計算 された流量を表2に示す.この結果より、1 点法、2 点法、3 点法による違いは、せいぜい5%程度であった.一般に、水深75cm以下の場合、1 点法が採用されるが、今回の結果からもその妥

当性が伺える.一方,浮子による結果は,他の方法で求めた流量のほぼ2倍の大きさとなっていた.観測に用いた浮子は,スポンジにビニールテープを巻いた2~3cm程度の小さいものであるため,表面水と一緒に流れるようになっている.本来は水中に抵抗板を下げて,もう少し下層の流れを反映させるべきであるが,そのようなものを用いていないために,今回のように大きい値が得られたものと考えられる.

2.2 合同研修

大学院生と学部 生および教員の参加 による合同研修(写 真3)を3月9日から 11日にかけて松山 市野外活動センター で実施した.参加学 生は,高知大学10

写真3 合同研修

名,愛媛大学9名,教員は高知大学5名,愛媛大学3名である.そのスケジュールを表3に示す.

月日	時間	担当者	内容
3 月 9	13:00-15:00	高橋明男 貞松篤志 吉良清加 山下敏史 中村真由子	セミナー1 学生による発表 森林整備が流域水循環に与える影響に関する実証的研究 施設園芸ハウスにおける淡水時の温室効果ガス N ₂ O 発生要因 水路の生物生息環境と拡幅部における流れのシミュレーション 解体コンクリートの水質浄化剤としての安全性評価手法について 泉の生物相
Ħ	15:30-17:30	松本伸介 藤原正幸 小林範之	セミナー2 教員による発表 景観をデザインする 地球・日本・松山の水資源と水利用 大谷池の改修
3 月 10 日	9:00-18:00	藤原正幸 小林範之	現地見学および実習 (見学:志河川ダム,大谷池,中央公園の多自然河川整 備,水質測定実習:三ヶ村泉,龍沢泉,浮島神社拡幅 水路)
3 月 11 日	9:00-10:40	藤間久子 刀根裕彰 前川恵子 野木明博	セミナー3 学生による発表 松山城壕水の水質特性についての研究 大規模土砂生産後の物部川の微細土砂流出について ABICによるパラメータλ ₂ および中間層ユニット数の決定 農業生産組合による農地の維持管理効果
	10:40-11:00		研修の総括

表3 合同研修のスケジュール

2.3 特別講義(学部)

両コースにおいて,学部のカリキュラムをより充実させるために,学外講師任用科目での講師 交換を実施した.愛媛大学では水質学を体系的に解説する科目として「特別講義(流域水質

学)」(担当:藤原拓)を開講した.本科目では,前半に講義を行い,後半は実験により,前半に 獲得した知識の定着を目指した.また,高知大学では水文学を包括的に解説する科目として 「生産環境工学特論II」(担当:高瀬恵次)を開講した.両講義とも,集中講義ではあるが,4日 間連続の授業ではなく,2日ずつ2回に分けて実施した.集中講義はともすれば一方通行的な 授業となりがちで、周到な準備と工夫によらねば学習効果を高めるのが困難ではあるが、あえ て前後2回に分けることで,前半獲得した知識を整理して後半が受講できるという利点がある.

3.評価

3.1 大学院合同授業

湧水量観測とその解析においては、それぞれの大学から2名ずつの計4名が1チームとなり、 作業を行ったが、お互い密接なコミュニケーションを取りながら、計画的に作業をすすめることが できた. 道後平野での実習では利水と環境保全、香長平野での実習では流域に対する多面 的な視点をテーマとしたメニューを構築することができた.

3.2 合同研修

最終日における総括において、ほとんどの参加者は初回にしては予想を上回る充実した研 修となったと評価した.

セミナー:卒業論文の研究成果を題材にしたセミナーとしたが,卒論発表会とは趣を異にし, 研修という位置づけで個々の学生がその発表内容を再構成することにより,プレゼンテーション の重要性を再認識するとともに,その能力向上へ向けての動機づけがなされたこと,仲間の発 表を聴く中で農業土木に関連する分野の知識を深められたこと,さらにそれを受けて大学院進 学後・就職後の勉学・研究意欲の意識を再確認できたことなど,得るものは非常に多かったと 評価される.また,発表に対する学生からの積極的な質疑応答は,進行係にとっては喜ぶべき 想定外の状況であった.

現地見学&実習:高知大学では,泉(重信川流域の特徴ともなっている)を初めて見る者が ほとんどで,香長平野と道後平野との水利用形態の違いを,文字通り「百聞は一見にしかず」 で学ぶ事ができ,学外研修ならではの収穫であった.一方,道後平野に住んでいるとは言って も,愛媛大学の学生も,泉を見るのは初めての者が多かったことから,教室で学んだ水利用シ ステムを間近に見ることで,教室と現場のギャップを埋めることが出来た.

4. 課題

合同研修に関しては以下に挙げるように解決すべき課題が多い.

実施時期:実施時期が春休みにずれ込んだため,愛媛大学の3年生はインターンシップと 重なった.次回は実施時期を再検討する必要がある.

予算の確保:今回の研修にかかった経費は高知大学学長裁量経費から支出された.また, 平成19年度は愛媛大学農学部長裁量経費を獲得することが出来た.しかしながら,来年度以 降については,どのようにするかを考える必要がある.

研修テーマの設定:学生と教員とが共に学び何らかの成果を残せるような共同調査や,将来 の共同研究テーマの設定につながる形態の企画を模索する.

謝辞:今回の一連の教育連携事業は高知大学学長裁量経費の補助を受けて実施した.

摩擦係数の評価に Colebrook-White 式を利用した Darcy-Weisbach 式に基づく指数型平均流速式の諸特性

福地次雄* 島田正志** 田中忠次***

*福島県県中農林事務所, **筑波大学大学院生命環境科学研究科, ***東京大学大学院農学生命科学研究科

要旨

円管の流れの抵抗則について、Darcy-Weisbach 式で評価する方法と指数型平均流速式で評価する方法がある. Darcy-Weisbach 式の摩擦係数の評価においては現在、Colebrook-White 式が一般的に使用されている. Colebrook-White 式は流速分布の対数則による表現を基礎として導出されており、次元的に同次式で半実験的理論式として工学的に十分な 精度を有する式であると考えられる.しかしこの式において、平均流速は相当粗度、管径、及び動水勾配から直接計算さ れず繰り返し計算を余儀なくされる.現在においてはこの繰り返し計算は瞬時に実行され妥当な平均流速が算定される. 一方指数型平均流速式としては一般的に Hazen-Williams 式と Manning 式が使用される.前者は閉管路の公式として、 後者は開水路の公式として設計基準に明示され設計に多用されている.閉管路の設計において Hazen-Williams 式を利用 することによってこれまで多くの問題が発生している.それは、この公式を遷移・完全粗面の領域で使用した場合に発生 する公式の"内部矛盾"に由来する.本論文では Colebrook-White 式を利用した Darcy-Weisbach 式から重回帰分析により 一定の使用条件のもと精密な指数型平均流速式が導出されることを示す.円管の流れに限定して、Hazen-Williams 式及 び Manning 式がどのような条件のもとに成立するかについて検討する.

1. 始めに

19世紀末に,流体力学(fluid mechanics)は共通領域を持たない二つの領域に分かれた.理論的な価値を重視する理論 水力学と経験的色彩の強い水理学である(Boundary Layer Theory(1999)Introduction). このような分化は,我々に興味 のある実在の流れがほとんど乱流という形態をとり,この乱流は現在でも未解決な問題であることに由来する.本報で対 象とする流れは閉管路であるが,流体力学的視点からは,前世紀前半に Prandtl 及び Kármán が(第1次近似として)流 速分布を表現する対数則という理論的結論に到達し,かつ Nikuradse(1932,1933)が系統的な滑面円管及び粗面円管の流 れの実験を行い,以降対数則の概念は 20 世紀流体力学における重要な到達点と考えられてきた. この対数則は現代にお いては詳細な実験と理論により再考されるべき事態となっている(New trends in turbulence(2000)pp.3-52).本報の主題 でないため詳述は避けるが,それにしても Nikuradse(1932,1933)が実験的に提案した対数則の具体的表現は工学的精度 の視点からは現在でもなお有効である.

Darcy-Weisbach 式(DW 式)は19世紀前半に経験則として提案された式である(水理学・流体力学(1995)pp.132-133) が、摩擦係数の評価に対数則(著者は実験条件及び考察方法によって変化する対数則の概念を対数線と定義した(福地次雄 (2007))がここでは従来の表現を使用する)を導入することにより理論上も精度上も普遍的に妥当な抵抗則の表現となる. 摩擦係数の評価に関しては種々の実験式が提案された(物部水理学(1970)pp.167-170)が、対数則を基礎として導出された Colebrook-White 式(CW 式)(Colebrook(1938))は普遍性という視点から見て比肩するべきものがなく、その後 1944 年、 実用の利便性のために Moody 線図が作成され、現在に至るまで管路の設計に有効に利用されている.現在では CW 式の 摩擦係数は数値計算によって瞬時に評価が可能である.DW-CW 式は機械工学系で、指数型平均流速公式は土木系で多用 される. Manning 式が公表されて以来多くの経験公式が提案されたが、現在では、閉管路では Hazen-Williams 式、開 水路では Manning 式が採用されることが一般的となっている.両者併存し特に設計上問題が発生しなければ、指数型平 均流速式による抵抗則の表現を問題視する必要はない.しかし、近年に至るまで Hazen-Williams 式を利用した設計で、 許容誤差では済まされない問題が米国で発生している(Fabián and Macelo(2003)). 潜在的には我が国においても同種の 問題があると思われるが、理論及び精度上指数型平均流速式は、より精密な議論によって補完される必要がある.

Fig. 1 Calculation preciseness of the Haaland formula as an approximation of CW formula, real line: friction coefficient from CW formula, \times : friction coefficient from Haaland formula

2. DW-CW 式と指数型平均流速式

2-1 指数型平均流速式の全体的評価

Darcy-Weisbach 式は以下のように表現される.

$$S = \frac{f}{D} \frac{V^2}{2g} \tag{1}$$

ここで, f は摩擦係数, D は管径, V は平均流速, g は重力加速度,及び S は動水勾配である.本式が次元的に同次であ ることは容易に確認される.摩擦係数f は一般にV1/NX^{*}数及び相対粗度によって決定される変量であり,別途計算式が必 要となる. Colebrook and White は完全滑面・遷移・完全粗面の全ての領域で妥当な式として下記 CW 式を提案した (Colebrook,C.F.(1938)).

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k_s}{3.7D} + \frac{2.51}{R_e\sqrt{f}}\right) \tag{2}$$

ここで、 k_s は相当粗度(equivalent sand roughness)、 R_e (=VD(v)はV1/NX^{*}数である. v は動粘性係数で、一般に水理学 的滑面流れの流速分布は粘性の影響を受けるため、摩擦係数の評価においても水温に依存する動粘性係数が影響する.こ れは既存の指数型平均流速式で評価し得ない.式(1)によれば、平均流速は見掛け上 $S^{0.5}$ に比例するが完全粗面以外の流 れにおいては摩擦係数の評価にV1/NX^{*}数の影響が現れ即断できない.

式(2)の式形は, k=0 とした場合には, Prandtl の完全滑面の抵抗則を表現し, Re→∞とすれば, Kármán の完全粗面 流れの抵抗則を表現する(粘性流体の力学(1981)pp.192-193). 両者の統一的表現としての本式が遷移領域の抵抗則に関す る実験結果にも整合する(Colebrook(1938))ことは興味深い.本式は摩擦係数に関して陰関数となっている.これは Moody

線図を利用するか数値計算によって求められるが, DW-CW 式が長期にわたり高精度の式として評価されつつもこのことが現場における使用を拒んできた要因であると考えられる. CW 式の陽関数近似として多くの式が提案されてきた. Shimada(1988)は下記 Haaland(1981)の公式を使用して^パ イプ ラインの定常状態を短時間で計算する手法を提案した.

$$\frac{1}{\sqrt{f}} = -1.8\log\left(\frac{6.9}{\text{Re}} + \left(\frac{k_s}{3.7D}\right)^{1.11}\right)$$
(3)

式(3)の近似精度は通常の場合十分である. Fig.1 に計算結果を示す. この結果からは, CW 式に代わり Haaland 公式を 使用しても工学上問題になることはないと判断される. 相対誤差は Fig.1 の計算の範囲で 1.5%以内であり, 相対誤差の 平均, -0.22%, 相対誤差の標準偏差は 0.58%である.

本報では、CW 式を厳密に繰り返し計算によって計算するが、そのとき初期摩擦係数として式(3)を利用することによ り収束が速くなる. V1/NX^{*}数と管径及び粗度に対応した DW 式による動水勾配が計算される. 逆に管径と相当粗度及び 動水勾配を与えることによって繰り返し計算になるが平均流速が確定する. 現在ではこの種の計算は^{N°} ソコンを利用して瞬 時に行われる. 一般に指数型平均流速式を、

$$V = CD^{\alpha}S^{\beta}$$

と表現する. 直径 Dの代わりに径深 Rを採用してもよいが, このことによって平均流速式の一般性が確保される保証は

(4)

			-		-				-				
No.	***	***	1	2	3	4	5	6	7	8	9	10	11
***	***	Slope	0.0010	0.0016	0.0025	0.0040	0.0063	0.0100	0.0158	0.0251	0.0398	0.0631	0.1000
***	Dia.	Log	-3.00	-2.80	-2.60	-2.40	-2.20	-2.00	-1.80	-1.60	-1.40	-1.20	-1.00
1	0.1000	-1.00	-0.542	-0.429	-0.316	-0.203	-0.091	0.021	0.132	0.243	0.354	0.465	0.575
2	0.1259	-0.90	-0.472	-0.360	-0.247	-0.135	-0.024	0.088	0.199	0.309	0.420	0.530	0.640
3	0.1585	-0.80	-0.403	-0.291	-0.179	-0.068	0.043	0.154	0.265	0.375	0.485	0.595	0.705
4	0.1995	-0.70	-0.335	-0.224	-0.112	-0.001	0.109	0.220	0.330	0.440	0.550	0.659	0.769
5	0.2512	-0.60	-0.268	-0.157	-0.046	0.065	0.175	0.285	0.395	0.505	0.614	0.723	0.832
6	0.3162	-0.50	-0.201	-0.091	0.020	0.130	0.240	0.350	0.459	0.569	0.678	0.787	0.896
7	0.3981	-0.40	-0.135	-0.025	0.085	0.195	0.305	0.414	0.523	0.632	0.741	0.850	0.959
8	0.5012	-0.30	-0.070	0.040	0.150	0.259	0.369	0.478	0.587	0.696	0.804	0.913	1.021
9	0.6310	-0.20	-0.005	0.105	0.214	0.323	0.432	0.541	0.650	0.759	0.867	0.975	1.083
10	0.7943	-0.10	0.059	0.169	0.278	0.387	0.496	0.604	0.713	0.821	0.929	1.037	1.145
11	1.0000	0.00	0.123	0.232	0.341	0.450	0.559	0.667	0.775	0.883	0.991	1.099	1.206

Table 1 Expression of log (V_T) as k_s=0, V_T is calculated using DW-CW formula

Fig.2 Expression of log (V_T) at k_s=0, V_T is calculated using DW-CW formula

ないため直径を採用する(円管流れの経験則を径深の概念を媒介として一般化することには無理がある(Fukuchi(2006)). 両辺の常用対数をとると、

(5)

(6)

$$\log V = \log C + \alpha \log D + \beta \log S \rightarrow Z = c + aX + bY$$

となり,指数型平均流速式を求めることは、常用対数空間において重回帰により回帰対数平面を求めることに帰着する. 完全滑面の場合(k=0)について検討する.重力加速度はg=9.81m/sec,動粘性係数は 20° の値 ν =1.01×10⁻⁶m²/sec を使用 する.動水勾配については、最小値 0.001(logS=-3)~最大値 0.1(logS=-1)まで常用対数空間を 10 等分して計算点を指定 する. 管径についても、最小値 0.1m(logD=-1)~1m(logD=0)まで対数空間を 10 等分して計算点を指定する. 各交点で DW-CW 式より平均流速 V_T を計算し常用対数をとる. Table 1, Fig.2 に計算結果を示す. 回帰対数平面の計算で重相関 係数は 0.99995 となり、この回帰対数平面より確定する回帰指数型平均流速式は、

$$V_{R} = CD^{\alpha}S^{\beta} = 58.6D^{0.647}S^{0.549}$$

となった. DW-CW 式により計算される流速 V_T からの相対誤差 RER=($V_{R'}V_{T'}$ / V_T ×100 を評価すると, -0.85% <RER<3.67%で相対誤差の単純平均は 0.005%,標準偏差は SDR=0.96%となった. 重相関係数が MR=1 であれば計算流 速は常用対数空間で完全な平面となる. MR=0.99995 であるとは,完全相関にかなり近いように思われるが常用対数に よる評価であることに留意する必要がある. Fig.2 の表現で $\log(V_T)$ の代わりに回帰対数平面 $\log(V_R)$ を表示しても見掛け 上ほとんど変化しないが, Fig.3 に $\log(V_T)$ -log(V_R) を, λ_T - ν を拡大して表示した結果を示す. これは一つの例示である

Fig.3 log(V_T)-log(V_R): this shows the structure of the curved surface of the log (V_T) as compared with the multi-regression plane

が、一般に log(*V*かは相当粗度に対応して所与の範囲において固有の曲面を持つ.したがって、指数型平均流速式を導く ことは、この曲面を誤差の少ない平面で近似することに帰着することが理解される.両者の流速差を確認するため Fig.4 に相対誤差 RER=(*V_R V_T*)/*V_T*×100 を示す(対応する Table は省略してある).これが回帰対数平面近似における誤差の全 体像である.必要に応じて計算範囲を限定すれば、更に精度の高い平均流速式を得ることができる.

次に、DW-CW 式より求まる流速を真値として、これを HW 式と Manning 式で表現した場合について検討する.

Hazen-Williams
$$\vec{\pi}: V_H = 0.849 C_H R^{0.63} S^{0.54}$$
 (7)

Manning
$$\vec{\pi}$$
: $V_M = \frac{1}{n} R^{2/3} S^{0.5}$ (8)

Fig.4 Relative error of V_R to V_T at ks=0: RER = (V_R , V_T)/ V_T ×100, Multi-regression plane: C=58.6, α =0.647, β =0.549 Error indices: RERmin:-0.85%, RERmean: 0.01%, RERmax: 3.67%, SDR=0.96%

Fig.5 Relative error of V_H (value of Hazen-Williams formula) to V_T : REH = (V_H V_T)/ V_T ×100, the fixed point of efficient C_H of the formula: average, Error indices: REHmin:-2.13%, REHmean: 0.04%, REHmax: 7.93%, SDH=2.07%

式(7),(8)で, *C*_Hは HW 式の粗度に関わる係数で *R*(=*D*/4)は径深, *n* は Manning 式の粗度係数である. 各 *V*_Tの計算が *V*_H 及び *V*_Mに等しいとすると, 11×11=121 の計算点で *C*_H及び 1/*n* が逆算評価される. これらの値の算術平均を取ることに よって HW 式及び Manning 式が確定する. 計算の結果, HW 式においては, 相対誤差は-2.13%<REH<7.93%,相対誤差 の平均, 0.04%, 相対誤差の標準偏差, 2.07%となった. 全体の結果を Fig.5 に示すが *V*_Hは *V*_Rより精度が悪い. 全ての *C*_H逆算値を Table 2 に示すがこのとき逆算平均 *C*_Hは 156 である. Table 3 は, 水理公式集(1971) p.384 からの転記であ る. 逆算 *C*_Hが HW 式の係数の上限値に近いことは興味深い. したがって, HW 式は滑面円管の流れを実験的な基礎と していると判断される. 逆算 *C*_Hを *D*=0.1m, *S*=0.001 で計算したときの誤差を Fig.6 に示す. *C*_H=144 である. Fig.5 に 比較して, *f* う7の形状がほぼそのままで平行移動していることが分かる. この値は Table 3 の *C*_Hの下限値 145 に近いが, 壁面材質が同じでもこのようなことが発生し得る. *C*_Hは管壁の粗度にのみ依存して決定されるという暗黙の仮定が

***	Slope	0.0010	0.0016	0.0025	0.0040	0.0063	0.0100	0.0158	0.0251	0.0398	0.0631	0.1000
Dia.	Log	-3.00	-2.80	-2.60	-2.40	-2.20	-2.00	-1.80	-1.60	-1.40	-1.20	-1.00
0.1000	-1.00	144.1	145.8	147.4	149.0	150.4	151.7	152.9	154.0	155.0	156.0	156.8
0.1259	-0.90	146.3	147.9	149.3	150.7	151.9	153.1	154.2	155.1	156.0	156.8	157.6
0.1585	-0.80	148.3	149.7	151.0	152.2	153.3	154.3	155.2	156.1	156.8	157.5	158.1
0.1995	-0.70	150.0	151.2	152.4	153.5	154.4	155.3	156.1	156.8	157.5	158.0	158.6
0.2512	-0.60	151.5	152.6	153.6	154.5	155.4	156.1	156.8	157.4	157.9	158.4	158.8
0.3162	-0.50	152.7	153.7	154.6	155.4	156.1	156.8	157.3	157.8	158.2	158.6	158.9
0.3981	-0.40	153.8	154.7	155.4	156.1	156.7	157.2	157.7	158.1	158.4	158.6	158.8
0.5012	-0.30	154.7	155.4	156.0	156.6	157.1	157.5	157.9	158.1	158.4	158.5	158.6
0.6310	-0.20	155.4	156.0	156.5	156.9	157.3	157.7	157.9	158.1	158.2	158.3	158.3
0.7943	-0.10	155.9	156.4	156.8	157.1	157.4	157.6	157.8	157.9	158.0	158.0	157.9
1.0000	0.00	156.2	156.6	156.9	157.2	157.4	157.5	157.6	157.6	157.6	157.5	157.3

Table 2 C_H of HW formula calculated back from the table of V_T

Table 3	滑面管の	区均流速公式	「係数の	値
---------	------	--------	------	---

代表的管種	公式	係数の値	管の状態	同等な管種
新しい	HW式	C _H =145∼155	きわめて	黄銅, すず
塩化ビニール管	Manning式	n=0.009~0.012	平滑	鉛, ガラス管

Fig.6 Relative error of V_H (value of Hazen-Williams formula) toward V_T : REH = $(V_H - V_T)/V_T \times 100$, the fixed point of coefficient C_{H} : D=0.10m, S=0.001, Error indices: REHmin:-9.32%, REHmean:-7.31, REHmax: 0.00%, SDH=1.92%

成立しないことがわかる.このことは、αとβを固定値として扱う指数型平均流速式の全てにおいて言えることである. 次に Manning 式について, HW 式の場合と同じようにして計算した結果,相対誤差は-13.1%<REM<14.1%,相対誤差 の平均,0.54%,相対誤差の標準偏差,7.41%,逆算平均粗度係数は n=0.00828 である.仮に相対誤差の平均値をせっに するためには粗度係数を微調整しなければならない.n=0.00832 でほぼせっとなり相対誤差の標準偏差は7.38%で微調整 前とほとんど変わらない.このとき相対誤差の絶対値が標準偏差内にある個数の割合は74/111=0.667 で正規分布の理論 値 0.683 と大差ない.したがって,以下の考察では微調整前の標準偏差が公式の精度をよく表現するものとして回帰指数 型平均流速式と各公式の精度の尺度とする.n=0.00828 は Table 3 の範囲から外れる. Manning 式は主に開水路で使用 されるが,粗度係数が実験的にどのような断面で同定されたかということは粗度係数の評価に影響する.端的な事例は Camp の水理特性曲線に現れ,材質が同じでも相対深度によって大幅に粗度係数を変化させる必要がある. Manning 式 を前提として満流の場合を基準とすると最大で 30%近い粗度 n の評価誤差が発生する Camp(1946). Fukuchi(2006)はこ のことに関する詳細な検討を行い,調和径深という新しい径深の考え方を示し,相対深度によって粗度が変化しない指数 型平均流速式を提案した.しかし,本論文では円形閉管路という相似な断面をのみ考察対象としているためこの問題に言 及する必要はない.

Fig.7 に 1/n を平均的に求めた場合の相対誤差を, Fig.8 に D=0.1m, S=0.001 の Vrから求めた場合の相対誤差を示す.

Fig.7 Relative error of V_M (value of Manning formula) to V_T : REM = $(V_M - V_T)/V_T \times 100$, the fixed point of 1/n: average of 1/n, Error indices: REMmin:-13.1%, REMmean: 0.54%, REMmax: 14.1%, SDM=7.41%

Fig.8 Relative error of V_M (value of Manning formula) to V_T : REM = ($V_M V_T$)/ V_T ×100, the fixed point of 1/n: D=0.10m, S=0.001, Error indices: REMmin:-23.6%, REMmean: -11.6%, REMmax: 0.35%, SDM=6.52%

この場合も両j' j7はほぼ平行移動の関係にある. 誤差は固定値 β =0.5 の影響により動水勾配方向に顕著に現れている. 相当粗度が大きくなるにつれて, HW 式と Manning 式の精度は逆転する.所定の評価範囲(本報告では, $0.1m \leq D \leq 1m$, $0.001 \leq S \leq 0.1$)において *C*_H及び *n* が理想的に同定されたとして,公式の精度は相対誤差の標準偏差により評価される. HW 式の場合の標準偏差 SDH と Manning 式の場合の標準偏差 SDM が一致する相当粗度は試算の結果 *k*=0.113mm と なった.したがって,相当粗度がこれより小さい場合には HW 式の精度がよく,逆の場合には Manning 式の精度がよい.

Moody 線図の粗面領域と遷移領域の間に Rough Limit Line(RLL)がある. これは, *k*/*D*=200/(*Ref*^{1/2})より求められ(粘 性流体の力学(1981)p.193), 粗度レイノレス^{*}数 *k*_s+(=*k*_s*U*/ν)=70 に対応する. 上記の計算結果は全てこの RLL の左側である. RLL の左側(完全滑面・遷移領域)では HW 式の精度がよく右側(完全粗面領域)では Manning 式が精度がよいという通説 はここでは成立しない.

更に相当粗度を大きくしていくと、 $k_s=2.55$ mm で C=28.5, $\alpha=0.667$, $\beta=0.502$ となり、ほぼ Manning 式の式形に一 致する回帰指数型平均流速式を得ることができる. Fig.9 に V_R の相対誤差を示すが V_M の相対誤差の表示も本図とほぼ同 じである. このときの HW 式による V_H の相対誤差を Fig.10 に示す. SDH=6.30%となり、HW 式では大きな計算誤差 が発生する. C_H の計算点によっては 25%以上の相対誤差が発生することとなる. この誤差の発生は β の影響によるもの

Fig.9 Relative error of V_R to V_T at k_s =2.55mm: RER = (V_M - V_T)/ V_T ×100, Multi-regression plane: C=28.5, α =0.667, β =0.502, Error indices: RERmin:-0.83%, RERmean: -0.00%, RERmax: 1.82%, SDR=0.69%

Fig. 10 Relative error of V_H to V_T at k_s =2.55mm: REH = (V_H , V_T)/ V_T ×100, the fixed point of coefficient C_H of the formula: average, Error indices: REHmin:-11.3%, REHmean: 0.39%, REHmax: 15.4%, SDH=6.30%

であることが図から判断される.

粗度がこれ以上大きくなると Manning 式では真値からの乖離が発生するようになる.k=1cm として評価した場合, SDH=8.60%に比較して SDM=3.65%であることより,場合によって Manning 式は依然工学的精度を確保していると評価されるかもしれない.

以上の検討結果を Table 4 にまとめて示す. Table 4,(1)は重回帰により得られた平均流速式の評価であるが,係数 *C*は相当粗度に鋭敏に反応し相当粗度が大きくなるに従い減少する. α は複雑な挙動を示し,相当粗度がだっから大きくなるにつれて一度減少しその後増加する. β は完全滑面の 0.549 を最大値として完全粗面域の理論値 0.5 に収束していく. 回帰指数型平均流速式は仮に Colebrook-White 式の評価が将来変化したとしてもこのような性格を持つものと思われる. α , β を固定値として全ての相当粗度に対応できる平均流速式の作成は不可能である.

Table 4,(2)は HW 公式の評価, Table 4,(3)は Manning 公式の評価である. ラフに評価して, 水理学的に滑面に近ければ HW 公式の精度がよく, 完全粗面では Manning 公式の精度がよいと言える. ここでは, 所定の範囲のもとで理想的粗度 に関わる係数が同定されたという前提のもとでの議論であり誤差が最小に見積もられていることに留意すべきである.係

Table 4 Analytical result using DW-CW formula

Calculation range: $0.1m \le D \le 1m$, $0.001 \le S \le 0.1$

|--|

<i>k</i> _s (mm)	С	α	β	RERmin(%)	RERmean(%)	RERmax(%)	SDR(%)
0.000	58.6	0.647	0.549	-0.85	0.01	3.67	0.96
0.113	42.5	0.629	0.516	-1.17	0.01	4.62	1.09
2.550	28.5	0.667	0.502	-0.83	0.00	1.83	0.69
10.00	23.2	0.714	0.501	-1.23	0.01	2.23	1.10
(2) Hazen-	Williams Fo	rmula		_			
<i>k _s</i> (mm)	C _H	α (fix)	β (fix)	REHmin(%)	REHmean(%)	REHmax(%)	SDH(%)
0.000	156	0.63	0.54	-2.13	0.04	7.93	2.07
0.113	134	0.63	0.54	-5.732	0.14	9.14	3.74
2.550	92.2	0.63	0.54	-11.3	0.39	15.4	6.30
10.00	71.6	0.63	0.54	-15.4	0.71	23.4	8.60
(3) Mannin	g Formula			_			
<i>k</i> _s (mm)	n	α (fix)	β (fix)	REMmin(%)	REMmean(%)	REMmax(%)	SDM(%)
0.000	0.00828	2/3	0.5	-13.1	0.54	14.1	7.41
0.113	0.00960	2/3	0.5	-7.69	0.14	8.11	3.74
2.550	0.0140	2/3	0.5	-0.975	0.00	2.19	0.73
10.00	0.0181	2/3	0.5	-3.61	0.13	8.10	3.65

RERmin, REHmin, REMmin: Minimum value of relative error

RERmean, REHmean, REMmean: Mean value of relative error

RERmax, REHmax, REMmax:: Maximum value of relative error

SDR: Standard deviation of relative error as using multi-regression power equation

SDH: Standard deviation of relative error as using HW formula

SDM: Standard deviation of relative error as using Manning formula

Table 5 Temperature dependency of parameters, C, α , β

<i>T</i> (.°C)	ν (m2/s)	С	α	β	V(0.5, 0.01)	Comparison
0	1.79E-06	56.6	0.656	0.552	2.83	1.00
10	1.31E-06	57.7	0.651	0.550	2.92	1.03
20	1.01E-06	58.6	0.647	0.549	2.99	1.06
30	8.03E-07	59.4	0.643	0.548	3.05	1.08

V(0.5,0.01):Unit m∕sec, Mean velocity at *D*=0.5m, *S*=0.01

Comparison: Comparison of mean velocities to V=2.83 m/sec at 0°C

数の計算点如何によっては、((最大相対誤差)-(最小相対誤差))程度の相対誤差が発生することが考えられる.特に HW 式 を完全粗面領域で使用する場合、口径の小さい閉管路で実験的に同定された係数を大口径の閉管路に適用した場合には信 じがたい誤差が発生する可能性がある.Fabián and Macelo(2003)は、米国大都市で近年に至るまでの大口径^{ハ°} (7°のネット ワークの設計において、HW 式を使用して設計された有害な結果についての調査及び解析結果を報告している.ある大都市 での水供給システムが僅か5年で破綻した事例が述べられている.HW 式が本来の適用範囲外で使用された結果であり、結 論として彼らは円形閉管路の設計で、全ての解析領域を含む Darcy-Weisbach 式を使用することを強く主張している.

これまでの考察では、水温を 20℃とし動粘性係数を固定値として検討した. しかし、完全滑面・遷移領域では温度の 影響があり、完全滑面で最大の影響を受ける. ここでは、0℃、10℃、20℃、30℃のときの所定の範囲($0.1m \le D \le , 0.001 \le S \le 0.1$)での数値計算結果を Table 5 に示す. 温度の影響が少なからず回帰対数平面の算定に影響を及ぼすことが分かる. 因みに *D*=50cm, *S*=0.01 での平均流速の回帰式より計算される値も示す. これらの結果を許容誤差とするか否かは設計の内容と目的に依存する.

2-2 指数型平均流速式の特定点での評価

DW-CW 公式と等価な固定的指数型平均流速式を導出することが不可能であることが示された.ここでは,計算範囲を 絞り込み個別に指数型平均流速式を導出するもう一つの方法について検討する.ks=0とする. Fig.11 を参照して, Po 点

Fig. 11 Schematic for tangential plane of log (V_R) over common-logarithmic space at the point P₀(D, S); P₁(D/a, bS), P₂(D/a, S/b), P₃(aD, S/b), P₄(aD, bS), 0<a, b<1

の座標値を $P_0(D,S)$ とし、 P_1,P_2,P_3,P_4 の座標値を $P_1(D/a,bS)$, $P_2(D/a,S/b),P_3(aD,S/b),P_4(aD,bS)$ と表記する. ここでは例 示として、D=1m, S=0.01, a=0.5, b=0.5とする. このようにすることにより5点の相互関係は対数的に"等間隔"となる. この条件のもとで計算された回帰対数平面より回帰指数型平均流速式が確定する. C=56.10, $\alpha=0.6247$, $\beta=0.5417$ となった. この結果は期せずして HW 式の表現に近い. この式から計算される相対誤差は, P_0 点で REO=-0.330%, 以下, RE1=-0.168%, RE2=0.334%, RE3=-0.168%, RE4=0.334%となる. RE1=RE3, RE2=RE4 となるのが特徴的である. 詳 細に調べてみるとこの範囲内で発生する相対誤差は計算範囲が余り大きくない場合, REO≦REall≦RE2(orRE4)となる. この結論は $\log(V_7)$ が経験的に例外なく微小凸面であるため $k_s>0$ でも成立する. $a \rightarrow 1, b \rightarrow 1$ とすることにより,常用対数 空間において P_0 点に固有の接平面が確定する. a=1,b=1で計算不能となるが,仮に a=0.95,b=0.95とすることによりほぼ厳密な接平面が確定する. C=56.12, $\alpha=0.6247$, $\beta=0.5411$ となった. この接平面と先の範囲の異なる回帰平面はほぼ厳密に等価である. DW-CW 公式からの計算流速を真値とした場合,その全体構造は対数空間において粗度に応じてある 曲面となり,厳密な視点からは指数型平均流速式は場所から場所へと(D,S)に対応して変化すると言える.

更に、計算に必要な範囲が例えば管径 Dに関して $D_1 \sim D_2$ までであるとすれば、中心点の管径を $D_0 = (D_1 \times D_2)^{0.5}$ (幾何 平均を意味する)とし動水勾配についても同様にして粗度に対応した精密な指数型平均流速式が確定し相対誤差の範囲が 明確となる.この考え方、5 点法、を Fig.2 の $0.1m \le D \le 1.0m$, $0.001 \le S \le 0.1$ に適用すると、C = 58.4, $\alpha = 0.648$, $\beta = 0.550$ REO=-1.66,RE1=RE3=-1.51%, RE2=RE4=2.38%となった.因みにこの回帰対数平面を Fig.2 の計算点の配置で評価する と、RERmin=-1.80%, RERmean=-0.85%, RERmax=2.38%, SDR=0.97 となった.計算範囲が広いにも拘わらずこの方 法は工学的にみて十分に有用であることが分かる.

4 壁面粗度と指数型平均流速式との相互関係

DW 式で Vは $S^{0.5}$ に比例するように見える.しかし,これは完全粗面の場合にのみ正しく,完全滑面・遷移領域の場合は摩擦係数のV(1) λ 、数 $Re(=VD/\nu)$ 依存性を媒介として β は変量となる.完全滑面の場合の"流速分布を表現する"対数則を全断面にわたり積分して平均することにより下記対数平均流速式が得られる.

$$\frac{V}{U^*} = A_{sV} + \frac{1}{K_V} \left[-1.5 + \ln \frac{RU^*}{\nu} \right] \rightarrow A_{sK} + \frac{1}{K_V} \ln \frac{RU^*}{\nu}$$
(9)

Vは平均流速, A_{sv}は切片定数 K_vはカルマン定数(添字 Vは平均流速算定に使用される定数であることを強調するためであ る), Rは管半径, U^{*}は摩擦速度である.本式は平均流速算定という意味では厳密に評価され完全滑面の場合の指数型平 均流速式を直接算定することができる(福地(2007)). CW 式の導出過程においては本式が考慮されており,完全滑面とい う条件のもとでの CW 式の摩擦係数は本式によっても厳密に評価される.摩擦速度は定義により

$$U^* = \sqrt{\frac{\tau_0}{\rho}} = \sqrt{\frac{g}{4}} D^{0.5} S^{0.5} \to c_1 D^{0.5} S^{0.5}$$
(10)

と表現される.また,

$$\frac{RU^*}{\nu} = \frac{c_1 D^{1.5} S^{0.5}}{2\nu} \to c_2 D^{1.5} S^{0.5}$$
(11)

である. したがって, 式(9)より平均流速は,

$$V = \left(A_{sK} + \frac{1}{K_{V}}\ln\frac{RU^{*}}{\nu}\right)U^{*} \rightarrow \left[c_{3} + c_{4}\ln\left(D^{1.5}S^{0.5}\right)\right]D^{0.5}S^{0.5}$$
(12)

となる.完全滑面円管の場合に $\alpha > 0.5, \beta > 0.5$ となったのは本式の構造に由来する.

式(9)に対応する完全粗面の対数平均流速式は,

$$\frac{V}{U^*} = A_{rV} + \frac{1}{K_V} \left[-1.5 + \ln \frac{R}{k_s} \right] \rightarrow A_{rK} + \frac{1}{K_V} \ln \frac{D}{2k_s}$$
(13)

となる. *A*_{rv}は完全粗面対数則の切片定数である. 完全粗面という条件における CW 式の摩擦係数は本式によっても厳密 に評価される. 仮に *D*(2*k*)が固定値である(相対粗度が等しい)とした場合は,

$$V = \left(A_{rK} + \frac{1}{K_V} \ln \frac{D}{2k_s}\right) U^* \to c_5 D^{0.5} S^{0.5}$$
(14)

となり Chezy 式が厳密な意味を持つ.しかし通常変量は Dで相当粗度 ksは固定値として扱われる.このため式(13)による平均流速は,

$$V = \left(A_{rK} + \frac{1}{K_V} \ln \frac{D}{2k_s}\right) U^* \to (c_6 + c_7 \ln D) D^{0.5} S^{0.5}$$
(15)

となる. α は粗度に依存して変化する. このとき β =0.5 は常に成立するが α >0.5 は粗度に依存して広範な値を持つ. 更に遷移領域では式(15)の A_{rK} が粗度 $\nu/1\mu\chi$ 、数に依存して変化するため複雑となる. この効果は, CW 公式の導出過程に組み込まれている(粘性流体の力学(1981)pp.192-193).

5. 結論

1890年に Manning 式が公表されて約 120年, 1905年に Hazen-Williams 式が公表されて約 100年経過し, その他多 くの経験的平均流速式が公表されてきた(物部水理学(1970)pp.93-106)が,指数型平均流速式全般について精密な流体力 学的検討が必要とされる時代的要請があるものと思慮される.以下に本報告の基本的結論について要約する.

(1) 摩擦係数の計算に Colebrook-White 式を使用した Darcy-Weisbach 式(DW-CW 式)は水流の抵抗則を厳密に表現する が,本式で計算される平均流速を真値として,一定の計算範囲をのもと重回帰分析により回帰指数型平均流速式を導出した.

(2) その結果,指数型平均流速式を一般に $V=CD^{\alpha}S^{\beta}$ と表現した場合, α , β を固定値としては真の平均流速を表現し得ないことが明らかとなった.真の平均流速は常用対数空間上では粗度によって異なる微小凸型曲面となるためである.

(3)一般に与えられた相当粗度(絶対粗度)のもと管径 Dと動水勾配 Sの一定の範囲で求められた回帰指数型平均流速式は その範囲で最も精度の高い指数型平均流速式となる.

(4)相当粗度を変化させて, Hazen-Williams 式(HW 式)と Manning 式の誤差を厳密に評価した. その結果, HW 式は完 全滑面の流れでは比較的精度が確保されるが,完全粗面領域では真値からの無視し得ない相対誤差が発生することが分か った. これは HW 式の係数 C_H の調整によっては解決しない式の内部矛盾が完全粗面領域で発生するためである. 対照的 に Manning 式では,完全滑面近傍で大きな相対誤差が発生する. 完全粗面流れの特性である β =0.5 を採用しているた めである.

(5)一般に HW 式や Manning 式で粗度に関わる係数を調整することは、常用対数空間上では対数平面の上下移動を意味 する.これは即固定的な平均流速式では不可避的に真値からの乖離が発生することを示すものである.

(6)一定の計算範囲を指定して実用的に回帰指数型平均流速式を計算する5点法を提案した.この方法では範囲を小さく すれば、当該点に固有の接平面が定義されてその近傍で成立する平均流速式が厳密に確定し、かつ範囲をかなり大きく指 定しても工学的に有効である回帰指数型平均流速式が得られることを示した. (7)CW 式は普遍則としての対数則に密接に関連する.指数型平均流速式の基本的特徴を,対数則を基礎とした対数平均 流速式から定性的に説明した.

指数型平均流速公式で HW 式と Manning 式が多用されるようになったのは,前者が比較的完全滑面の平均流速を表現 し,後者が比較的完全粗面の平均流速を表現するためである.従来,閉管路であれば HW 式,開水路であれば Manning 式を採用することとされたが,本来閉管路か開水路かということと両式の特徴は無関係である.閉管路では比較的粗度が 小さく開水路では比較的粗度が大きいという水路形態の特性を反映した結果であると理解される.開水路であっても,実 験開水路などで壁面が水理学的に滑面であれば HW 式がより精度が高いと考えられる.同様に閉管路であっても完全粗 面であれば Manning 式の精度が優る.

Manning 式が経験則でありながら完全粗面の流れで精度がよいとされるのは、 $\alpha = 2/3$ が結果として実際の流れとの対比で平均的に妥当な値になっているためと思慮される. $\alpha = 2/3$ には必然性はないが、粗面領域における実験的な結果としての平均的な値を最も単純な整数の比として表現すると 2/3程度になるということである. ただし完全粗面領域での $\beta = 0.5$ には必然性があると考えられる.

水流抵抗則の表現として DW-CW 式は精度上HW式や Manning 式を凌駕するものである. 円形閉管路に限定して考え るならば,全面的に DW-CW 式を採用するよう基準を統一することが考えられる.しかし,幾つかの理由により,条件 対応回帰指数型平均流速式を決定することには意義がある.

(1)平均流速が管径及び動水勾配によって直接表現され操作が容易である.

(2)ポップを含めた送配水設計の各種最適設計において解析的取り扱いが可能となる.

(3)DW-CW 式は円形閉管路の流れにおいては厳密な抵抗則を与えるものの円管流の水理特性曲線の評価や開水路(特に複断面)の抵抗則の表現には直接適用できず指数型表現が不可避である(径深の概念を媒介とした理論公式(物部水理学(1970)pp.102-106)では全体を表現しきれない).

最も単純な円管の流れの抵抗則について指数型平均流速式の特徴を調べることは開水路での合理的な指数型平均流速 式の確立に寄与するものと考えられる.

従来,平均流速式の粗度に関わる係数(*C_H*, *n*)の評価においては,壁面の絶対粗度を反映すると同時に,不確定なもの をこの係数に全て集約するという性格を持っていたと考えられる.各係数が広範な値を持つことは粗度に関わる係数決定 のこのような性格に由来する.

ー回の実験により HW 式あるいは Manning 式の係数の値が厳密に決定されたとする.しかしここで決定された係数 (*C_H*, *n*)は,当該実験条件の近傍でのみ成立し有効範囲が限定される.他方,同じ実験において DW-CW 式を利用して相 当粗度(絶対粗度)が評価された場合には,この結果は普遍的であり一回の精密な実験が全てを表現することとなる.それ は,対数則と同様にこの式が流体力学の本質的概念である*V1/NX* 相似則に立脚しているためである(福地 2007).円形閉 管路では自明なこの結論が将来開水路においても成立することが理想である.

ー般に精密科学においては現象を表現する複数の方法があって相互に矛盾する場合,これを解決すべく周到な理論的検 討が行われ認識の深化が図られてきたと考えられる.水理学の最も基礎的な領域の一つである等流の抵抗則に関してもこ のような発展方向が望ましいと思慮される. 参考文献

・水理学・流体力学,(1995),禰津家久,朝倉書店

·水理公式集,(1971),昭和46年度改訂版,土木学会編.

・粘性流体の力学,(1981),生江武文・井上雅弘,機械工学基礎講座,理工学社.

・福地次雄,(2007),混合距離の一般化による壁面剪断乱流の基礎的研究,東京大学農学生命科学研究科博士論文

・物部水理学,(1970),本間仁・安芸皎一編,岩波書店.

· Boundary Layer Theory, (1999), Schlichting H., K. Gersten, 8th Revised and Enlarged Edition, Springer.

• Camp, T. R. (1946). "Sewage works." Sewage Works Journal, pp.3-16.

• Colebrook, C. F. (1939), Turbulent flow in Pipes, with particular reference to the transition region between the smooth and rough pipe laws, J. Inst. Civ. Engrg., London, England, pp.133-156.

• Fabián A. Bombardelli and Marcelo H. Garcia,(2003), Hydraulic Design of Large- Diameter Pipes, Journal of Hydraulic Engineering, Vol. 129, No. 11, pp.839-846

• Fukuchi, T., (2006), Hydraulic Elements Chart for Pipe Flow Using a New Definition of Hydraulic Radius, Journal of Hydraulic Engineering, Vol. 132, No. 9, pp. 990-994.

• Haaland, S. E. (1981), Simple and explicit formulas or the friction factor in turbulent pipe flow, including natural gas pipelines, Report FAGB-131, Norwegian Institute of Technology, Trondheim, Norway.

• Mckeon B.J., J. LI, W. Jiang, J. F. Morrison, and A. J. Smits, (2004), Further observations on the mean velocity distribution in fully developed pipe flow J. Fluid Mech. 501, 135.

• New trends in turbulence, (2000), Houches L., NATO Advanced Study Institute Session LXXIV, 14, Springer.

• Nikuradse, J. (1932) Forsch. Arb. Ing. Wes. No. 356(English transl. NASA TT F-10, 359).

• Nikuradse, J. (1933) Forsch. Arb. Ing. Wes. No. 361(English transl. NACA TM 1292).

• Shimada M. (1988), Time-Marching Approach for Pipe Steady Flows, Journal of Hydraulic Engineering, Vol. 114, No. 11, pp. 1301-1320.

· Zagarola M. V and A. J. Smits, (1998), Mean flow scaling of turbulent pipe flow, J. Fluid Mech. 373, 33

Characteristic Features of Power-Type Mean Velocity Equation Based on Darcy-Weisbach Formula Combined with Colebrook-White Formula

Tsugio Fukuchi¹, Masashi Shimada², Tadatsugu Tanaka³

¹Central Fukushima Agriculture and Forestry Office, Fukushima Prefecture Government ²Graduate School of Life and Environmental Sciences, Tsukuba University ³Graduate School of Agriculture and Life Science, The University of Tokyo

Abstract: There are tow ways to evaluate the friction law in pipe flow: one is the way based on the Darcy-Weisbach formula and the other is the one based on power-type mean velocity equation. For the evaluation of the friction coefficient of Darcy-Weisbach equation the Colebrook- White formula has been generally used. The formula is derived from the logarithmic law: logarithmic appearance of velocity distribution. It is dimensionally homogeneous equation and has enough accuracy to evaluate the friction coefficient for the purpose of engineering. The mean velocity of a uniform flow can not be calculated directly from an equivalent sand roughness, pipe diameter, and energy slope by using the formula; a retaliation process is necessary in the calculation. Now the retaliation is carried out within a fraction of a second and the suitable mean velocity is obtained.

On the other hand the Hazen-Williams formula and Manning formula are routinely used as power-type mean velocity formulae. The former is used as the mean velocity formula for closed pipe flow; the latter is for open channel flow. That is described clearly as the design criteria in design manuals and so the formulae are routinely used. There have been many problems in designs of closed pipe flow as the Hazen-Williams formula used. The reason is derived from an "internal contradiction" of the formula as it is used in the buffer and perfect rough range of flows.

In the paper it is shown that power-type mean velocity equations can be derived using the multiple linear regression analysis based on the Darcy-Weisbach formula combined with the Colebrook-White formula. The equations have a high preciseness for calculating mean velocities under each condition of usage. It is investigated whether or not the Hazen-Williams formula and the Manning formula are valid under what-like conditions. 京都大学大学院農学研究科 泉 智揮・〇竹内 潤一郎・宇波 耕一・河地 利彦

1. はじめに

近年,水質環境の悪化とその保全が重要なテーマ となっている.特に農業分野においては,肥料等の 流出や溶脱による河川や湖沼への水質環境に対する 影響を十分に把握する必要がある.著者らは,2005 年度から滋賀県高島市今津町において,農業排水の 環境への負荷を調査するため,対象地に気象観測ス テーションを設置するとともに,定期的に採水を行 い水質環境を調査している.

一般に,観測により得られる気象・水文データや 水質指標データを統計解析等により分析する研究は 多くみられる.しかしながら,観測データを表現す る確率微分方程式を考え,その方程式中に含まれる パラメータからデータの特性について考察を行った 研究は少ない.本研究では,今津地域における観測・ 調査で得られた時系列データをもとに,確率微分方 程式中のパラメータを同定し,そのパラメータから 時系列データの特性について考察する.

2. 確率微分方程式におけるパラメータの同定

観測により得られるデータを時系列データとして 捉え,その時間変動を確率的に扱うと,それらは確 率微分方程式で表現される.以下,その確率微分方 程式と方程式中のパラメータの同定手法について定 式化する.

2.1 伊藤拡散過程

時間的に一様な n 次元伊藤拡散過程は確率過程 X_t で,その数学モデルは次のように表される [1].

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t$$
(1)

ここで, B_t はm次元ブラウン運動で,平均0,分散 tの正規分布に従うという性質をもつ.b($\in R^n$)は ドリフト係数, σ ($\in R^{n \times m}$)は拡散係数,tは時間 である.

2.2 伊藤拡散過程としての時系列データのパラメー タ同定

伊藤のルール, dt · dt = 0, dt · dB_t = dB_t · dt = 0, dB_t · dB^T_t = dt から次式が導かれる.

$$\mathrm{d}X_t \cdot \mathrm{d}X_t^T = \sigma \sigma^T(X_t) \mathrm{d}t \tag{2}$$

n = m = 1のとき, (1) と (2)の離散化式は, それぞ

れ次のようになる.

$$\Delta X_k = b(X_k)\Delta t_k + \sigma(X_k)\Delta B_k \tag{3}$$

$$\Delta X_k)^2 = \sigma^2(X_k) \Delta t_k \tag{4}$$

したがって, Δt_k 内の増分が ΔX_k である時系列デー タ X_k に対して, X_j が x_0 に十分近いjをとって,関数bと σ は,次のように近似的に推定される[2].

$$b(x_0) = \frac{\sum_j \Delta X_j}{\sum_j \Delta t_j} \tag{5}$$

$$\sigma^2(x_0) = \frac{\sum_j \Delta X_j^2}{\sum_j \Delta t_j} \tag{6}$$

観測される気象・水文データや水質指標データを 時系列データとして捉えると、パラメータ $b \ge \sigma$ は、 (5) と (6) により同定される.

3. 対象地の概要

本研究の対象地は,琵琶湖の北西に位置する滋賀 県高島市今津町とする(図1).この地域は日本海側 気候に属し,平均年間降水量は約2,000mmである. 土地利用の形態は,農林業地区が大半を占めるもの の多様な土地利用がなされている(図2).この地域 に,2005年7月に気象観測ステーションを設置し, 気象項目の観測と水質環境の調査を行っている.気 象観測ステーションの設置地点は,山麓に位置する 境川上流に酒波地点(SA),周囲を農地に囲まれた 農業用排水路に梅原地点(UM),濁水が琵琶湖へ直 接流入することを防止するための沈砂地としての機 能を有する貫川内湖に貫川地点(NU)の計3地点と した.それぞれの位置と標高を表1に示す.観測す る気象項目は,気温,湿度,日射,風速,降雨量,水 深であり,調査対象とする水質環境指標は,全窒素, 全リン, 濁度, DO である.

図 1: Study area

図 2: Landuse

表 1: Geographical information of observation stations								
Station name	GPS location	EL						
SA:Sanami	35 26 13.1 N 136 00 20.5 E	185m						
UM:Umehara	35 24 53.0 N 135 59 50.4 E	130m						
NU:Nukegawa	35 25 46.6 N 136 02 16.9 E	85m						

 6. 同定されたパラメータによる時系列データ特性に 関する考察

上述のように式(5),(6)を用いて同定された確率 微分方程式のパラメータから,今津地域における気 象・水質データの特性に対して考察を行う.ここで は,得られたデータ項目のうち降雨量,濁度,水深

0 Rainfall (mm) 5 10 15 20 NU 25 500 UM Turbidity (FTU) 400 NU 300 200 100 120 0 Water Depth (cm) UM 100 NU 80 60 40 20 0 6/15 Date(day) 5/1 5/15 6/1 7/17/15 7/31 図 3: 観測データ(灌漑期) 0.035 Irrigation period 0.030 Non-irrigation period 0.025 0.020 Ь 0.015 0.010 0.005 0.000 5 10 15 20 25 Rainfall (mm) 図 5: 酒波の降雨量における σ

の3項目について考え,さらに時系列データを灌漑 期と非灌漑期に分けて,両期間の違いに注目して考 察を行う.時系列データは2006年のものを採用し, 灌漑期は水田に水がはられる4/25から落水が行われ る7/31までの期間とし,非灌漑期は積雪の影響が少 ないと考えられる9/1から10/31までの期間とする. 図3,4に,考察を行う3項目の灌漑期,非灌漑期に おける時系列データを示す.以下,それぞれの項目 について考察を行う.

4.1 降雨量の特性

図 5-10 に,3 地点における降雨量について,灌漑 期,非灌漑期のそれぞれに対して同定されたパラメー タを示す.全体として, σ は降雨量の増加とともに 大きな値をとる(正に増大する)傾向にあり,b は降 雨量の増加とともに小さな値をとる(負に増大する) 傾向にある.これは,降雨量が強まるにつれて,b に より時系列データにおいて降雨量を弱める方向に対 する変動幅が大きくなり,かつ, σ により確率的な変 動幅が大きくなることを表している.灌漑期と非灌 漑期との比較からは,特に大きな変化は見られない.

4.2 濁度の特性

図 11-14 に,梅原,貫川地点における濁度につい て,灌漑期,非灌漑期それぞれに対して同定された パラメータを示す.大きな特徴としてあげられるの が,灌漑期と非灌漑期との違いである.まず,農業 用排水路にある梅原地点では,負荷量が灌漑期と非 灌漑期とで約半分に減少していることが分かる.貫 川地点においても,まれに大きな値をとることがあ るものの,全体的にみると灌漑期に比べ非灌漑期に おいて濁度は減少する.また,パラメータの傾向と しては,非灌漑期については,σ値が濁度の増加と ともに大きな値をとり(正に増大し),b値が濁度の 増加とともに小さな値をとる(負に増大する)とい う,降雨量と同様の傾向がみられる.一方で灌漑期で は,両パラメータが水平な一直線上に分布している 様子がうかがえる.このことから,灌漑期において は、いったん濁るとなかなか回復しないが、非灌漑 期においては、濁っても回復することが分かる.こ れは,灌漑期と非灌漑期とで濁水の量に違いがある ためと考えられる、この傾向は特に貫川地点で顕著 に表れているが,梅原地点ではパラメータの分布が 一直線上ではなく帯状の分布を呈している.これは、 排水路では内湖より流れがあるために常に水質の状 態が更新されるものの,濁水が流れ込んでいること

には変わりがないために,負荷量の変動を繰り返し ながら貫川地点ほどではないが濁った状態が続いて いると解釈できる.

4.3 水深の特性

図 15-18 に,梅原,貫川地点における水深につい て,灌漑期,非灌漑期それぞれに対して同定された パラメータを示す.まず,両地点とも,両パラメータ がほぼ水平な一直線上に分布していることから,灌 漑期における濁度と同様の特性を有していることが 分かる.すなわち,水位は基本的には変動しないと いえる.しかしながら,濁度と異なり,必ずしも直線 上に分布しない点が少なからずプロットされている. これは,降雨の影響によって水位が上下しているた めと考えられるが、特に灌漑期の梅原地点では、そ のような点が非灌漑期や貫川地点よりも多くみられ、 また非灌漑期には見られない箇所(深度の小さな箇 所)で直線からの逸脱が見られる.これは,落水や堰 の開度など人為的に流量が調節されている影響と考 えられる.また,梅原地点の非灌漑期では,深度が 増すと降雨量と同様の特性を示すことが分かる.さ らに貫川地点では,非灌漑期になると灌漑期と比べ て水深を下げて変動をしていることが分かるが,こ れは,貫川内湖が琵琶湖の水位と連動しているため,

琵琶湖の制御水位の季節的な違いによる影響である と考えられる.

5. まとめ

今津地域において観測された気象・水文データや水 質指標データを時系列データとして捉え,それらの 時間変動を確率的に表す確率微分方程式におけるパ ラメータを同定し,そのパラメータから時系列デー タの特性について考察を行った.

以上のことから,降雨の特性については,降雨量 が大きいほど確率的な変動が大きくなることが示さ れた.濁度の特性については,非灌漑期では降雨と 同様の特性をもつが,灌漑期では,いったん濁るとそ のままの状態が継続するということが示された.水 深の特性については,基本的には灌漑期の濁度と同 様の特性をもち,一定の水深を保って推移するが,降 雨の影響や人為的な流量操作の影響を受けて変動す ることが示された.

今後は, さらにその他の気象・水質項目について も考察を行いそれぞれのデータ特性を明らかにする とともに, 各項目間の相互作用についても検討する.

参考文献

[1] Oksendal, B. (2000) : *Stochastic Differential Equations*, Fifth Edition, Berlin, DE:Springer, 107-108.

[2] Unami, K., T. Kawachi, S. Maeda, and J. Takeuchi: Computational methods supporting rainwater harvesting technology, Chapter in Water Resources Research Trends, Nova Science Publishers, (in press).

不均一冷却に基づく熱対流の特性

九州大学大学院生物資源環境科学府 〇濱上邦彦, 梶原義範 九州大学大学院農学研究院 森健, 平井康丸

1. はじめに

流入・流出が少なく水の流れが乏しい閉鎖性水域では、日中の日射による水温成層の形 成,夜間の放射冷却による混合層の発達という日サイクル過程が水域内循環に寄与する役 割は大きい.熱対流に関する研究として,水面冷却による不安定な状態が崩壊する物理的 な過程は、典型的な流体の安定問題として理論的にも研究されてきた、実験的には、静止 した流体を水面から冷却した場合もしくは底面から加熱した場合に、熱の供給が行われて いる側の境界部付近で生じる現象について Foster (1969)などによって可視化されている.

また、近年閉鎖性水域の水質浄化策として水生植物を用いる手法が用いられている。こ れは水域内部に生育する水生植物に栄養塩類を吸収 させた後,刈り取るなどの方法により,系外に排除す ることによって水質浄化を図るものである.水生植物 による水質浄化作用が機能的に働くためには,底層の 栄養塩類が上層へと運ばれる必要がある. 一方,水 面に繁茂する水生植物は、その規模により水域内流動 の駆動力となる風や熱の作用に影響を及ぼすことが 考えられる.

本研究では水生植物のある閉鎖性水域にお ける熱対流対象とする.水面に水生植物が繁茂 する場合,日中の日射を遮るなど,水面での熱 フラックスに大きく影響し,水域は不均一加熱 冷却される.このとき熱対流の発達過程は均一 冷却場とは異なる様相を示すと考えられる.可 視化,水温計測実験および数値計算により、こ れらについて検討を行う.

2. 水理実験概要

実験には図1 に示すアクリル製の水槽を 用いた.水槽は回りを発泡スチロール板で覆い 熱の授受を抑制した. 外気よりも高い温度の水を断熱材に より安定させた後、自然水面冷却を開始した.水草模擬体 として厚さ5mmの発砲スチロール板を水槽両端に配置し た. 水温の測定には熱電対を用い, 左側部より 5cm(St.1), 15cm(St.2), 25cm(St.3)の断面において水深方向に 1cm 間隔で計 30 点配置した. 測定周波数は 0.5Hz とした. 撮 影はナイロン粒子(粒径 5μm)をトレーサーとして, 側 部よりレーザーシート光 (entertainer 600LD) を照射し, 前面からビデオカメラ (FASTCAM 1024PCI 100KC) で撮影 した.得られた連続画像から PIV 解析を行った.撮影周

図1 実験装置図

表1 実験条件

EVD	coverage	ΔT	Heat Flux	Rayleigh number
EXP	ratio	(°C)	q (cal/cm ² s)	Ra
1-1	0%	15.1	3.13E-02	3.92E+11
1-2	0%	13.5	1.30E-02	1.63E+11
1-3	0%	12.3	1.08E-02	1.35E+11
1-4	0%	11.1	8.17E-03	1.02E+11
1-5	0%	10.1	5.79E-03	7.24E+10
2-1	30%	15.2	3.03E-02	3.79E+11
2-2	30%	13.5	1.50E-02	1.88E+11
2-3	30%	12.3	9.52E-03	1.19E+11
2-4	30%	11.0	7.77E-03	9.71E+10
2-5	30%	10.0	6.62E-03	8.27E+10

期を 4Hz とし, x=20~40cm の範囲を断面 1, x=40 ~60cm の範囲を断面 2 とする. 実験条件を表 1 に示す.

3. 水理実験結果

図2は冷水塊発生までの経過時間を,図3は流 動開始時の水平スケールを示している.浅枝・玉井 (1983)によると,これらの理論解は次の式,

$$t_{\nu} = \left(\frac{4}{\pi}\right)^{\frac{1}{4}} K_{1}^{\frac{5}{4}} \left(\frac{\upsilon}{\alpha F_{H}g / \rho c}\right)^{\frac{1}{2}}$$
(1)
$$L = 4\pi^{\frac{7}{8}} \frac{K_{1}^{\frac{1}{8}}}{K_{2}} \left(\frac{\upsilon \kappa^{2}}{\alpha F_{H}g / \rho c}\right)^{\frac{1}{4}}$$
(2)

で表される. ここに、vは動粘性係数、 α は 体膨張率、 F_H は熱フラックス、gは重力加 速度、 ρ は密度、cは比熱を表している. K_1 および K_2 は係数であり、図 2 では K_1 =12.5 の場合を実線で、 K_1 =24 の場合を点線で示 し、図 3 では K_1 =12.5、 K_2 =0.27 の場合を 実線で、 K_1 =24、 K_2 =0.35 の場合を点線で 示している. これらの図より PIV 解析より 求めた冷水塊の発生特性は理論解を概ね満 たしていることがわかる.

図4は被覆0%の場合での各発達段階にお ける流線図を示している.冷却開始後,水面 近傍の水温が水平方向にほぼ一様に冷却さ れ小さな対流セルが多数発生している(初期 段階).その後,冷水塊がプリューム状に沈 降していくことで,対流セルがその鉛直・水 平スケールを増大させていく(遷移段階). 底層まで到達し,しばらく経つと準定常状態 に達し,対流セルは安定して存在するように なる.

図5は被覆30%の場合での各発達段階にお ける流線図を示している.初期段階では小さ な対流セルが数多く発生しているが,被覆部 では見られない.遷移段階では,とくに境界 部を中心とした水平スケールの大きな対流

セルが卓越して形成されているのがわかる.また準定常状態における対流セルのアスペク ト比が大きくなっている.

図 6 は EXP2-1 における各測定断面での各水深における水温変動を示している. 模擬植 生は両端に配置するため、30%被覆時には St.1 は被覆部、St.2 は境界付近、St.3 は非被覆

図 6 各測定断面における水温変動 (EXP2-1)

部となる.図より,非被覆部である St.3 では,水面付 近において冷却開始直後から大きな変動が見られる. また下層では変動の振幅は小さいが,冷却開始後まも なく水温は減少していく.被覆部である St.1 では,被 覆が熱の授受を妨げているため,水面付近における水 温変動の振幅は小さい.しかし平均的な水温の減少傾 向は各測定断面で類似している.

図7はEXP2における各測定断面での水深0.5cmの 水温変動の乱れ強度を示している.この図から,各測

定断面において水面の熱フラックスが増加する と乱れ強度が増加する傾向がわかる.また,被 覆部(St.1)の乱れ強度は非被覆部(St.3)に比べて 小さい値となっており,境界部(St.2)はおよそそ の間の値をとっている.これより,被覆部では 熱の授受が抑制され,密度不安定による乱れの 発生が小さくなること,また今回の実験で用い た発泡スチロール板ではその値が半分以下の大 きさになることがわかる.さらに細かい水温変 動の特性を検討するために,次に Wavelet 変換 による検討を行う.

図 8 に EXP2-1 における各測定断面での水深 0.5cmの水温変動の離散 Wavelet 変換図を示す. これにより,流れ場の多重構造や卓越周波数が 経過時間で刻々と変化する様子を視覚的に捉え

ることができる.図の横軸が経過時間(s),縦軸が周波数(Hz)で,各座標に対応する Wavelet 展開係数の大きさをカラー表示で表している.すなわち任意の時刻において卓越している 周波数が濃い色を示している.同図より,各測定断面において水温変動の卓越周波数帯が 発達段階において変化していることがわかる.これは初期段階においては高い周波数帯を 示しており,急激に冷やされた水面付近の水塊が密度不安定状態となり細かい冷水塊の発 生が頻繁に起こり、またある程度時間が経過して発達段階となると、断続的に安定したプ リュームが沈降していることと考えられる.また被覆部である St.1 に比べ、非被覆部であ る St.3 では初期段階における卓越周波数帯が小さくなっている.すなわち熱フラックスの 大きい非被覆部では比較的素早く安定したプリュームが形成されていくことが示されてい る.また、境界部である St.2 では、複雑な変動特性を示しており、被覆部と非被覆部との 水塊交換の影響を受けていると考えられる.

3. 数値計算

流動・水温予測モデルの概要を以下に記す.水平方向を*x*軸,鉛直上向きを*z*軸とし,そ れぞれの流速成分を*u*, *w*とする.また,非圧縮・ブシネスク近似・rigid-lid を仮定する と,現象を支配する連続の式,運動方程式は以下で表される.

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho w)}{\partial w} = 0$$

$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u \cdot u) + \frac{\partial}{\partial z}(\rho w \cdot u) = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x}\left(\mu_{eff}\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial z}\left(\mu_{eff}\frac{\partial u}{\partial z}\right) + S_{U}$$

$$\frac{\partial}{\partial t}(\rho w) + \frac{\partial}{\partial x}(\rho u \cdot w) + \frac{\partial}{\partial z}(\rho w \cdot w) = -\frac{\partial p}{\partial z} + \frac{\partial}{\partial x}\left(\mu_{eff}\frac{\partial w}{\partial x}\right) + \frac{\partial}{\partial z}\left(\mu_{eff}\frac{\partial w}{\partial z}\right) - \rho g + S_{V}$$

$$\sum \sum V_{eff} = \rho \ \text{diff} \text{ there } p \ \text{d$$

ここに、 ρ は流体密度、pは圧力、gは重力加速度である。 μ_{eff} は実効粘性であり、粘度 μ に乱流粘性係数 μ_t を加え合わせたものとなる。また S_U および S_V は生成項である。 乱流モデルとしては $k - \varepsilon$ モデルを採用し、乱れエネルギーkおよびその散逸率 ε の輸送方 程式は、

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x}(\rho u \cdot k) + \frac{\partial}{\partial y}(\rho v \cdot k) - \frac{\partial}{\partial x}\left(\frac{\mu_{eff}}{\sigma_k}\frac{\partial k}{\partial x}\right) - \frac{\partial}{\partial y}\left(\frac{\mu_{eff}}{\sigma_k}\frac{\partial k}{\partial y}\right) = G - \rho\varepsilon$$

$$\frac{\partial}{\partial t}(\rho\varepsilon) + \frac{\partial}{\partial x}(\rho u \cdot \varepsilon) + \frac{\partial}{\partial y}(\rho v \cdot \varepsilon) - \frac{\partial}{\partial x}\left(\frac{\mu_{eff}}{\sigma_\varepsilon}\frac{\partial \varepsilon}{\partial x}\right) - \frac{\partial}{\partial y}\left(\frac{\mu_{eff}}{\sigma_\varepsilon}\frac{\partial \varepsilon}{\partial y}\right) = C_1 \frac{\varepsilon}{k}G - C_2 \rho \frac{\varepsilon^2}{k}$$

$$G = \mu_t \left\{ 2 \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 \right] + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2 \right\}$$

とする. 係数の値には C_1 = 1.44, C_2 = 1.92, σ_k = 1.0, σ_{ε} = 1.3, C_{μ} = 0.09 を用いた. 境界条件としては水底と側壁では壁関数を適用した. 水面での乱れエネルギー k_s および散 逸率 ε_s に関しては杉山らを参考に,

$$k_{S} = \frac{{u_{*S}}^{2}}{C_{\mu}^{1/2}}, \quad \varepsilon_{S} = \frac{C_{\mu}^{3/4} k_{S}^{3/2}}{\kappa \Delta y_{S}}$$

を用いた.ここで、 u_{*s} は水面摩擦速度、 κ はカルマン定数、 Δy_s は定義点の水面からの水 深である.次に、温度拡散方程式は、

$$\frac{\partial}{\partial t}(\rho cT) + \frac{\partial}{\partial x}(\rho cuT) + \frac{\partial}{\partial z}(\rho cwT) = \frac{\partial}{\partial x}\left(c\mu_T \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial z}\left(c\mu_T \frac{\partial T}{\partial z}\right) - \frac{dQ_z}{dz}$$

で現され、ここにT は水温、c は定圧比熱である、 Q_z は各水深における熱フラックスを表しており、今回は外的条件として水面の格子のみにおいて一定の熱フラックスを与えた. μ_T は温度の渦動拡散係数であり、実効粘性 μ_{eff} に乱流プラントル数 P_t を除して算出する. 図 9 に計算領域を示す.

4. 数值計算結果

図 10 は被覆のない場合における水温分布 図および流線図を示している.冷却初期段階 では水面付近において熱境界層が形成され, これが波打ち,流線図より多数の対流セルが 発生していることが確認できる.遷移段階で は安定した冷水塊がプリューム状に沈降し ており,その際流線図では沈降部を下向きと する対の対流セルが発達していることがわ かる.発達速度は水平方向にほぼ一様で,鉛 直方向への発達とともに,水平方向スケール を増大させていることがわかる.水底部へ到 達したときには約 5 対の対流セルとなって いる.

図 11 は被覆率 30%の場合における水温分 布図および流線図を示している. 初期段階に おいては非被覆部では対流セルが発生して いるが,非被覆部においてはその発生は確認 できない. 遷移段階においても被覆部にお いては顕著な対流セルの発生はないが,境界 部を中心とした水平流れの卓越した大きな 対流セルの発達がみられる.水底部へ到達し たときの対流セルの数は被覆のない場合よ りも少なくなっており,アスペクト比が大き くなっている.これらの傾向は可視化実験で 得られた各々の場合の対流の発達過程と類 似しており、これより本モデルが現象を良好 に再現しているといえる.次に,各発達段階 における対流セルの特性について,乱れエネ ルギーの輸送方程式の各項の比較を行うこ

図11 水温分布図および流線図(30%被覆)

とで検討を行う.

図 12 は被覆のない場合での各発達段 階における乱れエネルギーの輸送方程式 の各項(非定常項,対流項の水平・鉛直 成分,拡散項の水平・鉛直成分,生成項) の比較を示している.図の縦軸は各発達 段階における最大値で除している.初期 段階においては非定常項および生成項の 寄与が卓越しており,水面冷却により付 加された浮力エネルギーが冷水塊の沈降 によって鉛直方向に輸送されていること がわかる.その後の発達段階では対流項 の水平・鉛直成分が大きくなっており, 安定した対流セルが形成されていくため 非定常項の寄与率は小さくなっていく.

図 13 は被覆率 30%の場合での各発達 段階における乱れエネルギーの輸送方程 式の各項の比較を示している.初期段階 において被覆部ではどの項も小さく,乱 れは発生していない.発達段階ではまず 対流項の水平成分が被覆部においてみら れ,その後他の項の寄与が見られる.す なわち被覆のある場合における対流の発 達過程では密度差による水平対流が大き く寄与していることがわかる.

5. おわりに

不均一冷却による熱対流の発達過程を水理実験および数値計算に検討した.その結果, 被覆のある場合の対流の発達過程では密度差に基づく水平対流が大きく寄与すること,お よび発達段階では境界部を中心とする大きな対流セルがみられ,水平スケールの大きな対 流セルが卓越して発達していくことを示した.

参考文献

浅枝 隆・玉井 信行(1983):大きな Rayleigh 数をもつ熱対流セル内のプリュームについて,土木学会論 文報告集,第 336 号, pp. 65-73

Foster, T.D. (1969) : Onset of manifest convection in a layer of fluid with a time-dependent surface temperature, Phys. Fluids, Vol.12, pp. $2482 \sim 2487$

杉山 均・秋山 光庸・松原 珠(1995): 複断面水路内の乱流構造解析と縦渦生成に関する研究, 土木学 会論文集, No.515/Ⅱ-31, pp55-65

愛媛大学農学部 〇藤原正幸 藤田絢子

1. はじめに

我が国における魚道の形式として最も 一般的に採用され,かつ長い歴史を持つ 魚道形式のひとつがプールタイプ魚道で ある.タイトルにある「扇形魚道」はそ のプールタイプ魚道のひとつの形式であ る.扇型魚道は,魚道の幅を下流方向に 向かって扇状に広げることにより,魚道 入口を広くして遡上魚にとって入口を見 つけやすくする工夫が施された魚道であ る.馬渕ら(2003)が研究対象とした「棚 田式魚道」がその一形式である.

写真1 蔵ノ町堰全景

松山市を流れる小野川の蔵ノ町堰が

2004 年に改修され、その際、左岸に扇型魚道(写真1)が設置された.一般的な扇形魚道 は、流下するに従ってプールを区切る隔壁の長さが長くなるため、越流水深が小さくな り、その結果、魚の遡上にとっては好ましくない状況が発生するという欠点を持ってい る.しかしながら、本魚道は、隔壁に切欠きを設けることにより、越流水深が極端に小 さくなることを回避する工夫がなされている.

本研究では,新設されたこの扇型魚道の流況を調査し,流量から扇型魚道内の流況を 推定することを試みた.

2. 扇形魚道の概要

図 1 と図 2 に観測対象とした魚道の平面図と縦断図を示す. 左岸に沿った魚道の全長は 10.5m,最大幅は9.14m,そして最小幅(魚道出口)は3mである. 魚道は5つのプールで構成さ れ,上流から2 つめの隔壁までは直線形状で,それより下流はほぼ円弧の一部の形状となって いる. プール長は,すべて1.6mで,隔壁の厚さは0.4mである. 上流から4つめのプール(Pool 4) まで隣り合うプール間の落差が0.2mであるため,勾配は1/10となる. 最下流のプールは落差が 0.5m となり,その結果,勾配は 1/40 となり,他のプールと比較して緩くなっている. また,魚道の 底面には,玉石が敷き詰められている.

それぞれの隔壁に設けられている切欠きの総延長は、上流の隔壁(魚道出口)から、それぞれ 2.4m, 2.6m, 2.4m, 2.3m, 4.4m, 4.3m であり、下流側の 2 つの隔壁における切欠きが他の約 2 倍となっている.る.また、隔壁長は、上流から、それぞれ 3.0m, 3.0m, 3.1m, 5.7m, 8.6m, 11.6m となっている.

図1 蔵ノ町堰魚道の平面図

図2 蔵ノ町堰魚道の縦断図

3. 現地観測

2006年8月24日と10月11日に現地観測を実施した.魚道の平面図と観測点を図3 に示す.隔壁上で白い部分が切欠きである.観測点は3本の測定ライン上に設けたもの

である. それらは左岸に沿ったライン(Line 1),切欠きが直線的に連続する中央のライン(Line 2),同じく切欠きをつないだ短い ライン(Line 3)である.測定項目は流速 と水深で,図3に黒丸で示した場所でプー ル内では鉛直方向に3点(上層,中層,下 層),隔壁上では1点で観測した.総観測点 数は120点である.流速は3次元電磁流速 計を用い,1秒間隔で30秒間測定した.ま た,水深はスタフで測定した.

図3 扇形魚道と観測ライン

4. 観測結果

4.1 流量

魚道出口の流速と流積を測定して流量を求めた.表1にその結果を示す.表1より8月は午後に流量が増え,10月は一日中あまり変化がなかったことがわかる.

4.2 魚道内における流速

Line2 における鉛直 2 次元流速ベクトル図を図 4 に示す. 図 4 よりプールの中央は流れが遅くなること,落下流状態で あることがわかる.

なお,プールの水深は,最下流のPool 5 で 30cm 程度, それ以外は 40~50cm であった.

5. 流況の推定

5.1 流況の推定方法

流量から扇型魚道内の流況を推定す

るフローチャートを図5に示す.まず,

与えられた流量から、切欠き部の水深を推定する.次に、その値から、切欠き部での越 流流速を推定する.最後に、推定された越流流速から、プール内での流速の分布を推定 する.

5.2 流量と切欠き部水深の関係

隔壁上で限界流が発生すると仮定して,次式より隔壁上の水深 H_2 および切欠き部水深 $H_3(=H_1+H_2)$ を求めた.

表1 流量

日時	流量 (ℓ/s)
2006/8/24 10:23	205
2006/8/24 17:31	339
2006/10/11 9:33	321
2006/10/11 17:07	356

図 4 Line2の流速ベクトル図

(2006年10月11日)

$$Q = L_2 (H_1 + H_2) \sqrt{g(H_1 + H_2)} + (L_1 - L_2) H_2 \sqrt{gH_2}$$
(1)

ここでQ:流量, L_1 :隔壁の長さ, L_2 :切欠きの総延長, H_1 : 切欠きの高さ,g:重力加速度である.

式(1)より得られた H_3 と観測水深 H_0 を図 6 に表した. これらのデータから得られた回帰式より、 H_3 は H_0 の 89%で近似できることがわかった(相関係数=0.47).よっ て、修正した切欠き部の水深 H_4 は式(2)により求めるこ とができる.

$$H_4 = 0.89 \times H_3$$
 (2)

5.3 越流水深と越流流速の関係

 H_4 を式(3)に代入して求めた流速 V_1 と観測流速 V_0 の相関関係を図7に示した.相関係数は0.47であった.図7より,修正した切欠き部流速 V_2 は H_4 を用いて,式(4)より求めることができる.

$$V_1 = \sqrt{gH_4} \tag{3}$$
$$V_2 = \sqrt{gH_4} \times 0.86 \tag{4}$$

除く)に計算し, 表2に示した.この表により,切 欠き部以外でも越流しているいわゆる全面越流状態 の隔壁を見つけることにより,魚道に流れる流量が 推定できる.たとえば,魚道入口の隔壁のみ切欠き から越流しており,他の隔壁はすべて全面越流状態 であれば,流量は300ℓ/s程度であることがわかる.

5.4 越流流速とプール内の流速の関係

越流流速とプール内の流速は関係あると考え,そ れらの割合を各地点において求めた.その結果,今 回測定したデータの内,上流側隔壁が切欠きである

プール9つのうち6つが同じような流況となった.それらは8月24日のLine2のPool2, 3と10月11日のLine2のPool2,3,4と10月11日のLine3のPool4である.これらの データを平均したものを図8に示す.この図から,たとえばプール上流の越流流速が 1.0m/s であれば,プールの突入する越流流速は少なくとも1.7m/sになることが推定でき る.

図5 流況の推定手順

図6 観測水深H₀と計算水深

H₃の関係

図 7 観測流速*V*₀と計算流速*V*₁ の関係

5.5 切欠きの配置が越流流速に及ぼす影響

Line1 は、切欠きが一つおきに配置され、Line2 は、 切欠きが連続して直線上に配置されている. これらの データを比較することにより、切欠きの配置が越流流 速に及ぼす影響を調べた. 各プール下流側の越流流速 を図9にまとめた. この図から判断すると、切欠きが 直線上に並ぶことにより、流下するにしたがって流れ が加速するようなことはないようである.

表2 切欠き部最大越流量

場所	切欠き部 最大越流量
切欠き越流部 1	189(l/s)
切欠き越流部 2	220(l/s)
切欠き越流部 3	167(l/s)
切欠き越流部 4	282(l/s)
切欠き越流部 5	305(l/s)

6. 考察

8月24日10時の流量は205ℓ/sで,表2から切欠き 越流部2,4,5では切欠き部のみを流れていたと推定 される.写真2は8月24日14時の魚道の写真である. この写真からわかるように,切欠き越流部4,5では切 欠き部以外ほとんど越流していない.また,8月24日 17時と10月11日はどれも流量が3201/sを越えていて, 全面越流であった.表2より一番大きい越流量は切欠 き越流部5(魚道入口の隔壁)の305ℓ/s であり,この結

果からも全面越流していたことになり,現実と適合する.したがって, このことから上述した手法はある程 度信頼性があると考えられる.

7. おわりに

小野川に設置された扇型魚道を対 象として流量から魚道内流況を推定 する方法を提示した.今後は幅広い 流量変化への適用性を検討する必要 がある.

参考文献

馬渕和三・平松研・板垣博(2003):「棚田式魚 道」の水理特性と有効性に関する検証,雨 水資源化システム学会誌,9(1), pp.37-42.

図 8 上流側に切欠きがある プール内流況

写真2 越流状況(8月24日14時)

<u>魚道</u> ⇒ 河川横断工作物(頭首工・取水堰・えん堤) に設けられた、<u>魚類などの水生動物の移動や、産卵</u> のための遡上(遡河)、または海に還るための降下 (降河)などを阻害させないための施設。

🗠 魚道のフィールド研究の流れ

◎魚道は魚類等に本当に利用されているのか? ◎流れ場のどこをどのように遡上しているのか?

☞ <u>魚道の遡上と水理調査(魚道本体の機能)</u> 小型水中TVカメラによる観測・水理調査

◎現地調査から越流部を遡上する魚の遊泳速度は, 意外 と速い!

- ☞ 魚の突進速度(最大遊泳速度)は、実際いくら か?速い流れ場をどこまで泳げるのか?
- ☞ ・ 魚の突進速度に関する遊泳実験の必要性

「魚道設計への有益な情報提供に成り得る」

▲ 青森県

- 中野川

-#112

1

三ツ目内川

<u> のパーチカルスロット型魚道</u>

④田山堰頭首工 : 農土論集、No.228、2003年

晨土誌:晨業土木学会誌 晨土論集:晨業土木学会論3

アイスハーパー型魚道(赤石第2頭首工) 魚道幅:2.6m, ブール長:3.0m, 全長71m, 勾配: 1/20, プール間落差:0.15m, 切り欠き 部:0.45m, 潜孔:0.3m×0.3m2ヶ所

観測個体数

遊泳魚:96%

底生魚: 4%

XW b=0.2 k=22cm

484個体

100

毎道の	活炻	アイスハーパー型魚道	バーチカルスロット型魚道					
思理の	里親	(泉ら,2002)	(泉ら,2004)					
距離	雛	切り欠き部:20cm	スロット部:21cm					
水理弅	钅件	切り欠き水深:約21cm	水位差:約19cm					
魚	種	アユ・ウグイ	イワナ(アメマス)					
		(野生魚)	(養殖魚の放流実験)					
計測個	本数	585	39					
平均体	長	8.7cm	14.8cm~16.3cm					
遊泳速	を度	190cm·s ⁻¹ ~250cm·s ⁻¹	260 cm·s ⁻¹					
平均通過時間 0.25s 0.5s								

<u>自然誘導式スタミナトンネルを用いた野生魚の突進 速度に関する実験</u>

農土論集, No.249(2007)

○野生魚をスタミナトンネルへ自然誘導し、 泳いでも らう

☞ 人為的な影響を排除して、自然な状態で計測。

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	の計測	創魚と	スタ	ミナトン	ノネル流	[速、]	2進	速度							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										8種	•248	3個体	ب حة	十渊	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						計	測		魚	_					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	験月日	実験	天気	(7=	上 アブラル	ヽヤ ウシ	77 7	オイカリ	フラナ	sp.	ヤマ	7 ×	V	σ	水温
$ \frac{2005 \#}{61261} \underbrace{\mathbb{R}_{mn,1}}_{km,2} = \underbrace{\mathbb{R}_{m1,1}}_{mn,1} = \underbrace{\mathbb{R}_{$		留写		(尾)	^{1-均} (尾) ⁴ 体長 ^(尾) 体	長 (尾)	半均 (体長)	尾) 半:	^위 (尾)	半均体長	(尾)	半均体長	cm.	s-1	(°C)
$\begin{split} \frac{54}{2061} & \text{Run.1}^{**} & \text{inft.} & _ & _ & _ & _ & _ & _ & _ & _ & _ & $	05年			(cm) (c	m)	(cm)	(cr	n)	(cm)		(cm)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	126日 H	Run.1*	晴れ	_	_	_		_	_		_		141	3	13.0
8月4日 9/1301 Rund Rund 8 11 123 11 2.3 5.0 3 1 3 5.6 5.6 1 7.8 8.0 - - - - 108 1 108 5.6 5.7 9/1301 Rund Rund 102 6 1 7.8 - 6 - 102 1 8.6 - 102 10 - 102 10 10	16日 H	Run.3	晴れ	99	6.2 57 6	.5 10	7.1	4 8.	2 14	12.0	5	5.4	168	4	17.9
9_{12}^{12} \overline{P}_{11} \overline{Rund}_{11} \overline{P}_{12} \overline{P}_{13}	4日 H	Run.4	晴れ	4	5.7 41 5	.9 3	5.6	1 8.	0 -		-		178	6	23.9
・ 104 98 10 6 14 5 · *:カマツカ1尾(体長119cm),カワヤツメ1尾(体長42cm),**:計測風なし,V:代表流速,σ:標準備差 - </td <td>129日 130日 日</td> <td>Run.5 Run.6</td> <td>時7し 曇りのち眼</td> <td>en -</td> <td>2.3 -</td> <td>3</td> <td>5.6</td> <td>/.</td> <td>s _</td> <td></td> <td>_</td> <td></td> <td>198</td> <td>6</td> <td>14.7</td>	129日 130日 日	Run.5 Run.6	時7し 曇りのち眼	en -	2.3 -	3	5.6	/.	s _		_		198	6	14.7
*:カマツカ1尾(体長11.9cm),カワヤツメ1尾(体長42cm),**:計測魚なし,V:代表流速, σ :標準備差 168cm/sの流速で150以上遊泳した個体の平均突進速度 Run.3:V=168 cm·s ⁻¹			글	104	98	19		6	14		5				
I68cm/sの渡速で19以上遊泳した個体の平均突進速度 Run.3: $V=168 \text{ cm} \cdot \text{s}^{-1}$ の Run.3: $V=168 \text{ cm} \cdot \text{s}^{-1}$ 魚 種 個体数 平均体長 平均時間 σ 平均速度 σ 平均遊泳 正確 ア - 96 6.2 4.60 2.50 225 23 241 アブラハヤ 5 5.6 2.60 0.70 235 18 135 オイカア 4 8.2 2.69 0.79 235 26 185 マオタッ 12 12.2 1.79 0.81 249 18 138 ヤマメ 5 5.4 2.71 0.72 234 11 217	カマツカ	1尾(体:	長11.9cm),カワキ	ツメ1尾(体	長42cm),	** : 7	十測魚な	:L, V	:代表	流速,	σ:	標準	偏差	臣
168cm/sの渡速で109以上蓋泳した個体の平均突進速度 Run.3: V=168 cm·s ⁻¹ 血 個体数 平均時間 σ 平均速度 σ 平均速度 距離 平均造液 ア 二 06 (CE) (cm) (s) (s) (cm)															
Run.3: V=168 cm·s ⁻¹ 魚 種 価体数 平均時間 σ 平均速度 σ 平均速度 町備 (\overline{R}) (cm) (s) (s) (cm·s ⁻¹) (cm·s ⁻¹) $\overline{\mu}$ γ -96 -4.60 2.50 225 23 241 γ 7 53 6.5 2.60 1.10 233 21 165 $\dot{\gamma}/\dot{\gamma}$ 10 7.1 2.12 0.79 235 26 185 γ 7 5 5 2.71 0.72 234 11 138 $\forall \neg \gamma$ 5 5 7.7 0.72 234 11 217		168cm	l/sの流速	で1秒以上	遊泳した個	本の平均3	等進速度	Ē							
魚 種 個体数 平均時景 σ 平均速度 σ 平均遊派 平均遊派 正確 7 -2 96 6.2 4.60 2.50 225 23 241 7 7 53 6.5 2.60 1.10 233 21 165 $\rho / \ell \ell$ 10 7.1 2.12 0.76 235 18 135 7 7 4 8.2 2.69 0.79 235 26 185 7 7 12 12.2 1.79 0.81 249 18 138 4 7 7.7 2.14 1.72 2.17 1.8 1.2 1.79 0.81 2.49 18 1.38								Ru	1.3:V=	=168 c	m·s ⁻¹				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				田休粉	東梅休良	고분기며	- 11	~ J	7 长い市日	÷	~	平均	的遊泳	k	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		魚	種	1回1平安(平均仲女	平均应	f(#]	0 4	- 均速/	<u>×</u>	0	말	巨離		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(尾)	(cm)	(s)	((s) (cm • s ⁻¹) (cn	n•s ⁻¹)	(cm)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	-1	96	6.2	4.60	2.	.50	225		23	2	41	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		アブ	ラハヤ	53	6.5	2.60	1.	10	233		21	1	65		
オイカン 4 8.2 2.69 0.79 235 26 185 プナsp. 12 12.2 1.79 0.81 249 18 138 ヤマメ 5 5.4 2.71 0.72 234 11 217		, Ċ	グイ	10	7.1	2.12	0.	.76	235		18	1	35		
γ sp. 12 12.2 1.79 0.81 249 18 138 $\gamma \neq \lambda$ 5 5.4 2.71 0.72 234 11 217		オ	イカワ	4	8.2	2.69	0.	.79	235		26		85		
1.3 / 3 3.4 2./1 0./2 234 11 21/		2	sp.	12	12.2	2.71	0.	81 72	249		18		38		
$\vec{r} \vec{\tau} \vec{\tau} \vec{\tau} \vec{\tau} \vec{\tau} \vec{\tau} \vec{\tau} \tau$		77	<u>、</u> / ラハヤ*	32	5.4	2.71	0.	30	234		26		62	-	
		*:17	ノノ・ド・ Rem/sの清	<u>32</u> E速で1秒J	11- 遊泳した	2.34	· 1. 均穿准i	速度. (<u></u>	偏差	20		02	-	

突進速度に関する今後の研究展開の方向

〇本研究で実施している挿入式と誘導式による淡水魚 の突進速度

☞ 挿入式・誘導式双方とも一長・一短がある

挿入式の利点 ①遊泳した供試魚を1尾ずつ確実に同定できる。 ②比較的供試魚の個体数を確保できやすい。

①供試魚へのハンドリングなどによる人為的な影響(小さな個体はとくに)

誘導式の利点 ①人為的なハンドリングの影響を排除でき、遊泳意欲についても「自然に 遊泳した」という個体を計測することができる。

短所 277 ⑦現装置では個々の個体の謙別が難しい(二度泳ぐ個体もある)。 ②データ数を蓄積する意味で確実にスタミナトンネルまで遊泳しこの中を 泳いでくれるのか、の課題がある。

