農業用施設（ため池）における耐震性検証技術

福島県農業総合センター 企画経営部 ○佐藤旗幸

1．はじめに

東日本大震災により多くの農業用ダム及びため池 が被災したことから，地域住民の安全•安心を確保 するため，ため池の耐震性検証を行い，その結果に基づき，早急な対策が求められている。

福島県には受益面積2ha以上のため池が 3,035箇所あり，警成ため池の532箇所については耐震性検証が実施されているが，残る2，503箇所についても耐震性の検証が必要である。

ため池の耐震性検証は慣行法としてボーリング調査結果による安定解析が行われている。しかし，復旧•復興業務が多大な福島県において，慣行法で は時間と費用を要するため，調査労力の確保が困難である。

そこで，短時間で比較的安価な検証方法として， サウンディング調查に基づく危険度予測方法（以下簡易法）の有効性を検証した。

現在実施している震災後の点検データをベースと して，今回，9箇所のため池で慣行法と簡易法として のサウンディングの結果を取集し，安定解析結果を求めた。

置．方法

検討対象としたため池は，ボーリングとサウンディ ングの両方が調査されている県内 9 箇所とした。

基礎となるデータとして，農林事務所で発注され たため池の現況調査のうち，堤体情報（堤高，満水位，堤頂幅，法面勾配），士質サンプル及びボーリン グやサウンディングで得られた土質定数を取集し た。

安定解析については，以下の各種条件を設定し，解析を行った。

堤体形状はため池点検の実測値である堤高，満水位，堤頂幅，法面勾配を使用しモデル化した（表 1，図1）。

検討水位として，常時満水位は現況余水昩クレス ト高としている。

堤体形式について，今回は全て均一型であった。

浸潤線位置はカサグランデの方法で設定した。
安定解析方法については，土地改良事業設計指針「ため池整備•1）に基づき，円形すべり面スライス法 （図2）を使用し，応力表示は有効応力，計算斜面は上下流側で計算を行った。

ため池名	堤高 （m）	满水位 （m）	崼頂輻 （m）	法勾見		土糞	
				$\begin{gathered} \text { 上流 } \\ \left(1: n_{1}\right) \end{gathered}$	$\begin{gathered} \text { 下流 } \\ \left(1: n_{2}\right) \end{gathered}$	媞体	悬挽地媻
K池	3.0	1.9	6.0	1.5	1.5	䩞性土	粘性土
A池	4.8	3.7	3.5	2.0	2.0	絬性土	䊀性土
M池	3.8	2.7	4.0	2.5	2.0	絬性土	数性工
日池	30	1.9	5.5	2.5	1.5	絬性土	䊩性土
D池	3.8	3.0	3.5	2.0	1.8	粘性土	絬性土
R 沼	15.9	13.9	3.5	3.1	2.4	数性土	砂贊土
汸	6.0	4.4	4.0	2.0	2.0	粘悾土	
H池	5.0	3.8	4.0	1.5	2.0	嚾性土	数鉎土
V池	6.0	4.1	3.5	2.0	2.0	歲性土	蛅性土

表1 ため池諸元

H 涱高
h 清水位
L 堤頂㡟
n_{i} 法面勾军己（前法面）
n_{2} 法面勾匡（缺法面）

図1 安定解析 堤体モデル

図2 円形すべり面スライス法概念図

土質定数については，慣行法はボーリング時に

得られた内部摩擦角 ϕ ，粘着力cを採用した。
一方，サウンディングでは，内部摩擦角と粘着力を測定することができないため，サウンディング で得られた換算N値から，土地改良事業設計指針「ため池整備」22り基づき，内部摩擦角 ϕ または粘着力へへ換算した。堤体が砂質士の場合は内部摩㡜角 ϕ へ換算し，粘着力 $\mathrm{C}=0$ とした。粘性土の場合は粘着力のへ換算し，内部摩擦角 $\phi=0$ とした。 なお，士質の判定については，サウンディング実施時に目視により判定した。

堤体の自重として使用する土の単位体積重量 については，慣行法では単位体積重量（湿潤，飽和）を採用し，簡易法では，既存の土質調査のデ ータの結果を勘案し，湿潤単位体積重量 $16 \mathrm{kN} / \mathrm{m}^{3}$ ，飽和単位体積重量 $18 \mathrm{kN} / \mathrm{m}^{3}$ として設定した。

111．結黑及び考察

慣行法である三軸圧縮試験結果から得た土質定数より求めた安全率（Fs γ ）と，簡易法であるサウン ディングの愌算N値から算定した土質定数で安全率 （Fsn）を比較した場合，ほぼ同等の結果となった（図 3）。

また，安定解析の結果，前法面，後法面の双方に おいて，安全率が必要とされる1．2を上回り，安全と の判定となった。

なお，現地の堤体形状が安定解析をモデル化し たものと大きく異なる場合（図4）は，Fs γ とFsnの安全率が同等から外れる結果となった。

図3 ボーリングとサウンディングの安全率

図4 モデルと異なる堤体
（下流側の地盤が高い例）

1V．きとめ

慣行法であるボーリング調査による安定解析と簡易的な土質調查であるサウンディングによるため池堤体の安定解析による安全率を比較した結果，ほぼ同等の結果が得られた。

このことから，ため池点検で得られた堤体情報とサ ウンディングの土質データによる解析で簡易的な耐震性検証の手法として採用できる可能性は高いこと が示唆された。

V．今後の展開

今回の検討は，対象としたため池数が少なく，簡易的な耐震性検証の有効性を检討するものである。

今後は，調査点数を増やし，堤高や堤体土質の買なるため池について解析し，本手法の現地適合性を確認する必要がある。

サウンディングの有効性が確認されれば，耐震性評価の必要な2，503箇所を本手法によりスクリーニン グ調査を実施する。安全性を醀認できないものにつ いてのみ，ボーリング調査による詳細検査を行うこと で，より効率的な検証が可能となる。

引閉 文 献
1）農林水産省農村振興局整備部設計課監修：士地改良事業設計指針「ため沈整備」，49，2006
2）農林水産省農村振興局䇥備部設計潩監修：土地改良亨業設計指針「ため池整備」，53， 2006

