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Abstract 

Accurate and early flood forecasting is important for implementing safety measures, reducing flood damage, 

and ensuring effective flood rescue operations. In this study, the LST model was applied to hydrological data for 

11 years in Kuroki Dam catchment (49.2 km2) in Okayama Prefecture, Japan. The LST model was calibrated by 

the differential evolution technique. A system for real-time flood runoff forecasting was constructed by 

introducing the particle filter technique into the operation of the LST model. Using the LST model, the system for 

probabilistic flood runoff forecasting was developed. Pseudo forecasted rainfall data were generated by adding 

Gaussian noise to 1- and 2-h ahead future observations collected from gauge points in Kuroki Dam. The generated 

data were input to the LST model to calculate the distribution of forecasted discharges. The model performed well 

in the simulation of both flood (short-term) and long-term runoff. The results show that the distributions of 1- and 

2-h ahead flood runoff predicted by the proposed forecasting system were accurate, compared with observed data. 

Therefore, it can provide useful information for efficient flood warning and protection planning. 
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要 旨 

正確な早期の洪水予測は，洪水に対する安全対策，被害軽減，救助活動の実施のために重要である。本研

究では，1991〜2001 年の 11 年間に岡山県の黒木ダム流域（流域面積 49.2km2）で観測された水文気象デー

タを対象として LST モデルを適用し，洪水の実時間予測を行った。LST モデルのパラメータは，差分進化

法により同定し，このモデルに粒子フィルターを導入して実時間洪水予測システムを構築した。さらに，1

時間および２時間先の地点観測雨量に正規ノイズを加えて擬似的な降雨の確率分布を生成し，これを同定し

た LST モデルに入力して将来の流量の確率分布を生成した。その結果，同定された LST モデルは対象流域

の長期，短期（洪水期）いずれの降雨－流出関係も精度よく再現し，また，ここで提案した流量の分布予測

システムは，１，２時間先の流出を精度よく予測した。以上の結果から，これらの情報は，効果的な洪水警

報および洪水防御計画の策定に有用な情報を提供することが示された。 
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1. INTRODUCTION  

With increased frequency and intensity as well as irregular changes of natural disasters in the recent decades, 

climate change continues to be one of the key risks affecting natural and human systems across the world (Phuong, 

2017; Pachauri & Meyer, 2014). Climate change has largely impacted social, economic, and environmental 

systems and shaped prospects for sustainable development in most countries (Munasinghe, 2007). In the last few 

decades, floods have without doubt become one of the most devastating manifestations of climate change on Earth, 



 

 

 

and every year, extreme floods have severe consequences for the society and mankind in terms of property 

destruction and loss of lives (Plaza Guingla et al., 2013). A recent increase in damages caused by floods has 

highlighted the need for significant measures to reduce damages and to protect lives. One of those most significant 

measures is issuing flood forecasting systems. 

Timely and accurate flood forecasting can help in estimating the extent of the eventual flooding and allow 

safety measures to be taken at an earlier time, thereby reducing the destruction caused by extreme floods as well 

as assisting the authority in flood rescue operations. Additionally, the provision of flood forecasting and warning 

system is vital, practical, and promotes the mitigation of flood losses. It is, therefore, a requisite to develop flood 

forecasting systems that can make predictions as accurately and early as possible during real-time flooding events. 

To this end, a good forecasting system should be able to probabilistically estimate flood damage, such that 

effective flood warning and protection planning can be efficiently designed.  

In this study, the long- and short-term runoff model (LST model) was applied to analyze flood runoff and 

long-term runoff successively and used to forecast flood in real-time. Parameters of the LST model were 

calibrated using the differential evolutionary (DE) technique, and the particle filter (PF) technique was introduced 

to improve the certainty of hydrological condition. Then, short-term rainfall prediction was conducted by creating 

pseudo forecasted rainfall with Gaussian distribution, and probabilistic 1- and 2-h ahead flood forecasting was 

finally performed in real-time using the LST model combined with PF. 

 

2. RESEARCH CATCHMENT AND HYRDOLOGICAL DATA 

The research was conducted in Kuroki Dam catchment, 

which covers an area of 49.2 km2. The catchment is located 

upstream of Yoshii River Basin in the north of Okayama 

Prefecture in Japan. Fig. 1 is a geographical map of the 

Kuroki Dam catchment showing the locations of hydro-

meteorological stations. 

In this study, hydrological data for 11 years from January 

1991 to December 2001 were collected at Kuroki dam and 

five gauging stations (Kurami, Iwabuchi, Daigasen, Aba, and 

Tsuyama) in and around the catchment. The number of target 

flood is 22. The collected data include hourly and daily data 

of discharge and precipitation, and daily maximum and 

minimum temperature.  

 

3. RESEARCH METHODS 

3.1 Long- and short-term runoff (LST) model 

The LST model, developed by Kadoya and Nagai (1988), 

was applied to analyze long- and short-term runoff simultaneously and continuously. 

The LST model consists of three storage tanks arranged in vertical series, and the top 

tank is composed of upper and lower layers, as shown in Fig. 2. 

The continuity equation of each tank is as follows: 

𝑑𝑆1

𝑑𝑡
= 𝑟 − 𝐸1 − 𝑓 − 𝑄1 − 𝑄2   

𝑑𝑆2

𝑑𝑡
= 𝑓 − 𝑄3 − 𝑔1  (1) 

𝑑𝑆3

𝑑𝑡
= 𝑔1 − 𝐸2  − 𝑄4 − 𝑔2   

𝑑𝑆4

𝑑𝑡
= 𝑔2 − 𝐸3 − 𝑄5 

where 𝑆 is the water storage depth; 𝑟 is the rainfall intensity; 𝑓 is  the infiltration rate; 

𝑔 is the percolation rate; and 𝑄 is the runoff components in which 𝑄1  is the surface 

runoff, 𝑄2 is the prompt subsurface runoff, 𝑄3 is the delayed subsurface runoff, 𝑄4  is 

prompt groundwater runoff, and 𝑄5 is delayed groundwater runoff. 𝐸1~𝐸3 are the 

evapotranspiration rates from each tank, which are calculated as follows: 

𝐸1 = 𝛾𝜃𝐸    𝐸2 = (1 − 𝛾)𝐸    𝐸3 = 𝛾(1 − 𝜃)𝐸   (2) Fig. 2 LST Model 

 

 
Fig. 1 Kuroki Dam catchment 

  



 

 

 

where γ is the separation ratio of evapotranspiration for the upper tank (𝛾 = 0.6); 𝜃 = 1 𝑖𝑓 𝑆1 > 0 𝑜𝑟 𝑆2 ≥ 𝑍3, 

𝜃 = 𝑆2 𝑍3⁄ 𝑖𝑓 𝑆1 = 0 and 𝑆2 < 𝑍3; 𝐸 is the actual evapotranspiration.  

The actual evaporation, E, is estimated as the sum of the potential evaporation by the following equation: 

    𝐸 = ∑ 𝜔𝑖 .  𝑘𝑖
4
𝑖=1  . 𝐸𝑃      (3) 

where 𝐸𝑝is the potential evapotranspiration estimated by the Makkink equation; 𝜔𝑖  is the area ratio of the i-th 

zone of the four altitudinal zones in the Kuroki Dam catchment; 𝑘𝑖 is a factor depending on weather conditions, in 

which 𝑘𝑖 = 1.0 for 𝑟𝑖 = 0 and 0 ≤ 𝑘𝑖 < 1.0 for 𝑟𝑖 > 0. 

Runoff from each hole of the LST model is linearly related to the water storage depth in the respective tank, 

except for 𝑄1. The runoff 𝑄2, 𝑄3, 𝑄4, 𝑄5 and percolation 𝑔 are calculated by the following equations by assuming 

that runoff occurs from the holes only when the storage depth of the tank, 𝑆, exceeds its corresponding height, 𝑍, 

i.e., 𝑆 > 𝑍. The surface runoff, 𝑄1, is assumed to be expressed by Manning’s law. Thus, 𝑚 = 5/3 is used in Eq. 

(4). Each of the abovementioned relations is summarized as follows: 

𝑄1 = 𝑎1(𝑆1 − 𝑍1)𝑚 , 𝑚 = 5/3 𝑄2 = 𝑎2𝑆1  𝑄3 = 𝑎3(𝑆2 − 𝑍3) , 𝑔1 = 𝑏2𝑆2  (4) 

𝑄4 = 𝑎4𝑆3 , 𝑔2 = 𝑏3𝑆3  𝑄5 = 𝑎5𝑆4 

where 𝑎1 is the runoff coefficient; 𝑏1 is the infiltration coefficient: 𝑏2 and 𝑏3 are percolation coefficients; and 𝑍 is 

the height of the runoff holes.  

 

3.2 Differential Evolution (DE) technique 

The DE technique, originally developed by Storn and Price (1995), is a very simple stochastic population-

based global optimization technique. The DE-flow chart is pictorially represented in Fig. 3. 

The selection and use of an appropriate and meaningful specific objective function, which is also considered as 

an efficiency criterion or indicator in this case, is a critical step as it strongly affects the success rate in 

hydrological modeling calibration using automatic optimization technique and in model performance assessment. 

In this study, the parameters of the LST model were calibrated using the DE method under the objective functions 

of mean absolute error (MAE) and Nash-Sutcliffe coefficient of efficiency (NSE), which are used to access the 

goodness-of-fit of the simulation model to the available observations. MAE and NSE are defined as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑄𝑠𝑖𝑚,𝑖 − 𝑄𝑜𝑏𝑠,𝑖|𝑁

𝑖=1         (5)  𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)
2𝑁

𝑖=1

  (6) 

MAE = 0 and NSE = 1 indicate that the simulated values completely correspond to observed values. 

 



 

 

 

 
Fig. 3 A flow chart of DE’s generate-and-test loop 

 

3.3 Particle filter (PF) technique 

A major problem that often occurs in real-time forecasting is the uncertainty quantification (Weerts & El 

Serafy, 2006). This uncertainty arises due to the oversimplification of the rainfall-runoff process, uncertainties of 

the model structure and/or model parameters, and the limit of the hydrological information (Nagai, 2003; Kadoya 

& Tanakaramu, 1989). This uncertainty problem can be efficiently solved by incorporating filtering techniques 

into a rainfall-runoff model, promoting accurate real-time flood forecasting (Chen et al., 2018, Plaza Guingla et al., 

2013). In this research, the system for real-time 1- and 2-h ahead flood runoff forecasting was constructed using 

the LST model in combination with the PF technique (Gordon et al., 1993). Assuming 𝑥 as a state variable and 𝑦 

as an observation variable, the procedure of the PF is outlined in the following steps: 

Step 1: Randomly generate N initial particles [𝑥𝑡
(𝑖)

]𝑖=1
𝑁  based on the proposed distribution 𝜋(𝑥𝑡|𝑥𝑡−1

(𝑖)
, 𝑦0:𝑡). The 

number of particles is selected by the user as a tradeoff between computational effort and estimation accuracy. 

Step 2: Prediction: Perform step (2.1) and (2.2) for each particle 𝑖 

Step 2.1. Obtain the system noise 𝑢𝑡 from a known prior density function 𝑝(𝑢𝑡). 

Step 2.2.  𝑥𝑡−1|𝑥𝑡−1
(𝑖)

 is evolved over time by the state evolutional model 𝑥𝑡|𝑡−1 = 𝑓𝑡(𝑥𝑡−1, 𝑢𝑡) and 𝑥𝑡|𝑥𝑡−1
(𝑖)

 is 

obtained. 

Step 3: Updating: Assume that observation data 𝑦𝑡 is obtained, performing step (3.1) to (3.3) for each particle 𝑖 

Step 3.1. Compute the likelihood 𝑝(𝑦𝑡|𝑥𝑡) from 𝑥𝑡|𝑥𝑡−1
(𝑖)

 



 

 

 

𝑝 (𝑦𝑡|𝑥𝑡|𝑥𝑡−1
(𝑖)

) =
1

√2𝜋𝜎𝑦
exp (−

𝐸𝑞
2

2𝜎𝑦
2)  

𝐸𝑞 = |𝑄𝑜𝑏𝑠,𝑗 − 𝑄𝑐𝑎𝑙,𝑗
(𝑖)

|  

𝜎𝑦 = 0.1𝑄𝑐𝑎𝑙,𝑗
(𝑖)

  

Step 3.2. Use the likelihood density to determine the corresponding importance weight of each particle  𝑤𝑡
(𝑖)

=

𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

). 

Calculate the total weight 𝑇𝑤 = ∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1  and then normalize the particle weights as 𝑤𝑡
(𝑖)

= 𝑇𝑤
−1𝑤𝑡

(𝑖)
  

Step 3.3. Resample each particle based on 𝑤𝑡
(𝑖)

 to obtain [𝑥𝑡|𝑡
(𝑖)

]𝑖=1
𝑁  

Step 3.3.1. Construct the cumulative sum of weights (CSW) by computing 𝑐𝑖 = 𝑐𝑖−1 + 𝑤𝑡
(𝑖)

 with 𝑐1 = 0. 

Step 3.3.2. Let 𝑖 = 1 and draw a starting point 𝑢𝑖 from the uniform distribution 𝑈[0, 𝑁−1]. 

Step 3.3.3. For 𝑗 = 1,2, … , 𝑁 

• Move along the CSW by making 

𝑢𝑗 = 𝑢1 + 𝑁−1(𝑗 − 1) 

• While 𝑢𝑗 > 𝑐𝑖 make 𝑖 = 𝑖 + 1 

• Assign samples: 𝑥𝑡
𝑗

= 𝑥𝑡
𝑖 

• Assign weights: 𝑤𝑡
𝑗

= 𝑁−1 

• Assign parents: 𝑖𝑗 = 𝑖 

Step 4: Return to step 2 as 𝑡 = 𝑡 + 1 

 

3.4 Formulation of pseudo forecasted rainfall data 

Systems for flood runoff forecasting 

require short-term prediction of rainfall. A few 

hours to days ahead online forecasts of rainfall 

are expected to improve flood forecasting 

accuracy. However, the Japan Meteorological 

Agency (JMA) only started providing 1 h to a 

few days ahead of rainfall forecasting 

information since June 2019. The record length 

of online rainfall forecasting by the JMA is not 

sufficient for assessing the influence of future 

rainfall prediction uncertainty on the runoff 

forecast. Additionally, reliable forecasted 

rainfall information is difficult to acquire. To 

account for the missing data, we used pseudo 

forecasted rainfall data created by adding 

Gaussian noise to 1- and 2-h ahead rainfall 

data collected from the gauge points in the 

research catchment instead of real forecasted 

rainfall information. Fig. 4 presents a brief 

description of creating pseudo forecasted 

rainfall.  

                     

4. RESULTS AND DISCUSSION 

4.1 Runoff simulation by LST model  

 

The unknown parameters of the LST model were calibrated via DE to optimize the objective function. MAE 

and the NSE were used as objective functions for minimization and maximization, respectively. Optimal 

parameters of the LST model and the error of daily and flood runoff are shown in Table 1. When the LST model 

 
Fig. 4 Formulation of pseudo forecasted rainfall  

 

 

     

Table 1 Optimal model parameters 

(Kuroki Dam catchment) 

 

Table 2 Accuracy of runoff simulation using LST model with 

and without particle filter 

 
 



 

 

 

was optimized by minimizing MAE, the daily runoff error was 3.93 mm/d on average for 11 years. When 

optimized by maximizing NSE, it was 75.40% (see Table 2). Two examples of simulated daily runoff are 

presented in Fig. 5. The simulated hydrographs and results of MAE and NSE indicate that the calculated daily 

runoff well agrees with the observed one. Hence, the optimized LST models can be considered to show good 

performance in long-term runoff simulation. 

Fig. 6 shows that the calculated flood runoff hydrographs during four floods, which shows that the calculated 

runoff well simulates the observed runoff. The MAE and NSE in every 1-h discharge for 22 floods shown in 

Table 2 were 4.17 m3/s and 71.34%, respectively. Thus, the LST model also simulated the flood runoff suitably. 

The results clearly indicate that the LST model simulated both long- and short-term runoff with good accuracy. 

 

4.2 Runoff simulation by LST model with updating by particle filter 

As the abovementioned results show that the identified runoff model has good applicability in the Kuroki Dam 

catchment, the existing difference between the calculated and observed discharge can be mainly attributed to the 

estimation of the areal average rainfall. The rainfall estimation error is believed to influence the storage depth of 

the top tank, particularly the upper layer’s storage, 𝑆1, of the top tank that dominantly controls flood runoff. 𝑆1, 

therefore, is considered to be the state variable in this research. With the application of the particle filter to storage 

depth in the upper layer of the top tank, the simulation accuracy of the model can be expected to be significantly 

improved in the short-term runoff. This improvement is shown in Table 2, in which MAE is decreased to 0.59 

mm/d and NSE is increased to 99.36% in the case of the daily runoff, and 0.33 m3/s and 99.54%, respectively, in 

the case of flood runoff. 

Figs. 5 and 6 show the good agreement between calculated and observed discharge for both daily and flood 

runoff, which proves that the combination of the LST model and particle filter can be used for real-time flood 

forecasting. 

 

4.3 Statistical forecast of discharge considering rainfall forecast uncertainty and updating by particle 

filter 

While planning countermeasures against flood disasters, the uncertainty of discharge forecasting should be 

evaluated because it is strongly related to the security of our society. The uncertainty related to discharge 

forecasting is considered to mainly arise from the uncertainty in rainfall forecasting. The influence of rainfall-

runoff modeling, which is another important factor in the uncertainty of discharge forecasting, has been already 

Fig. 5 Examples of simulated daily runoff by the LST model with particle filter 

 



 

 

 

minimized by optimization of the rainfall-runoff model using the DE technique. The uncertainty is inevitable in 

forecasting, although the accuracy of the forecasted rainfall is essentially important for real-time flood forecasting. 

Therefore, we here discuss the influence of uncertainty in rainfall forecasting on discharge forecasting. 

 

The JMA started to deliver 1 h to a few days ahead of rainfall forecasting information in June 2019. This 

record length is not yet sufficient for use and it is not easy to obtain a reliable record of real-time rainfall 

information. Additionally, if reliable probabilistic information of future discharge is available, the alert level of 

flood can be set by considering the exceedance probability of forecasted water levels, which is expected to be used 

as valuable information for effective flood management. A method for creating pseudo forecasted rainfall data 

was, therefore, applied to overcome this issue. Instead of using real forecasted rainfall information, we used 

pseudo forecasted rainfall data created by adding Gaussian noise to the 1- and 2-h ahead future rainfall data 

collected from gauge points in and around the research catchment. In this research the standard deviation of the 

rainfall noise was selected as 10% of the future observed rainfall values and all the negative pseudo forecasted 

rainfall generated from this method were replaced by 0. An example of the distribution of the pseudo forecasted 

rainfall and the corresponding forecasted discharges are depicted in Fig. 7. With the method of creating pseudo 

forecasted rainfall, a corresponding distribution of forecasted discharges could be obtained. The distribution of 

forecasted discharge is a significant solution to deal with the problem of forecast uncertainty. It can be used to 

probabilistically estimate flood risk, thereby supporting efficient real-time flood warning and protection plans.  

Next, the mean of all the forecasted discharges was selected as the output for the flood forecasting and 

compared with the observed discharge obtained from Kuroki dam to assess the accuracy of the proposed 

 

 
Fig. 6 Examples of simulated flood runoff by the LST with particle filter 



 

 

 

forecasting system. Fig. 8 presents examples of the results for 1- and 2-h ahead flood forecasting in Kuroki Dam 

catchment. The hydrographs show that the proposed forecasting method provides remarkably accurate estimations 

of flood runoff forecasting. The accuracy of flood forecasting is expressed by the Normalized Root-Mean-Squared 

Error (NRMSE) (given by Eq. 7), which is a measure of errors widely used to assess the forecasting accuracy 

when comparing with observed values.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑜𝑏𝑠−𝑄𝑓𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑)2𝑇

𝑡=1

𝑇
   𝑁𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸

𝑄𝑜𝑏𝑠
𝑚𝑎𝑥−𝑄𝑜𝑏𝑠

𝑚𝑖𝑛   (7) 

 

 

 

 

 

 

 

 

The comparison between observed and forecasted discharge is shown in Fig. 9 for all floods, in which the 

errors of 1- and 2-h ahead forecasting are 5.05% and 7.40%, respectively. NRMSE appears to increase with 

increasing hours ahead of the flood forecasting, but it remained within an acceptable range. Flood runoff was also 

forecasted without updating (no filter) and the results are presented in Table 3. It can be seen that application of 

PF significantly improves the NRMSE. From the results, it is concluded that by introducing the filtering technique 

(particle filter) to the LST model and applying a suitable method of rainfall prediction, the 1-h and 2-h ahead 

flood can be accurately forecasted.  

In this research, we used the pseudo probabilistic distribution of rainfall based on the observed rainfall to 

consider probabilistic forecasting of future discharge. If more reliable probabilistic information of future 

forecasted rainfall is available, real-time probabilistic discharge forecasting is expected to provide more valuable 

information to for reducing flood damage.  

Table 3 Improvement of forecasting accuracy by filtering 

 

 

1-h ahead 2-h ahead

No filter 9.98 11.10

Particle filter 5.05 7.40

NRMSE (%)Forecasting 

method

Fig. 7 Example of distribution of pseudo1-h and 2-h forecasted rainfall and corresponding 

forecasted runoff 

(Flood No. 22, 19:00 2001.06.18) 



 

 

 

 

 

 
Fig. 8 Examples of real-time flood forecasting (1- and 2-h ahead) 

 

5. CONCLUSION 

In this study, the LST model was applied to hydrological data (1991–2001) in the Kuroki Dam catchment 

(49.2 km2). Some conclusions can be drawn as follows: 

(1) The LST model calibrated by the differential evolution technique can simulate both long-term and flood 

runoff (short-term runoff) successively with good accuracy. The applicability of the model was tested 

through continuous simulation for 11 years and for 22 floods.  

(2) Using the method of creating pseudo forecasted rainfall, a distribution of forecasted discharge values can 

be obtained. It can be used for probabilistic estimation of flood risk that is expected for application to 

real-time flood warning and protection planning.  

(3) The proposed forecasting system including the LST model combined with particle filter and using the 

method of creating pseudo forecasted rainfall provided accurate 1- and 2-h ahead flood runoff forecasts.  



 

 

 

More reliable probabilistic information of future forecasted rainfall can be obtained, more valuable information 

for mitigating flood damage can be acquired by using generated real-time probabilistic discharge forecasting. 

Hence, future research on efficient methods to probabilistically forecast rainfall data is expected. 

 
Fig. 9 Comparison between observed and forecasted discharge for all floods (1- and 2-h ahead forecasting) 
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