Ji& 7K C No.32 2020 T4 45 i |
Applied Hydrology

Real-time Flood Forecasting Considering Probabilistic Distribution of
Future Forecasted Rainfall

TERY DR AT %2 5 8 L 7oK D SERF ] 7]

BUI Thanh Hoa*, CHIKAMORI Hidetaka*, KUDO Ryoji*
*Graduate School of Environmental and Life Science, Okayama University
(3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530)

TA By RT* AR ET - LSRR

*[if] | LR AR AP B 5 A fn B FZE 8+ (700-8530 ] (L b P & 1 3-1-1)

Abstract

Accurate and early flood forecasting is important for implementing safety measures, reducing flood damage,
and ensuring effective flood rescue operations. In this study, the LST model was applied to hydrological data for
11 years in Kuroki Dam catchment (49.2 km?) in Okayama Prefecture, Japan. The LST model was calibrated by
the differential evolution technique. A system for real-time flood runoff forecasting was constructed by
introducing the particle filter technique into the operation of the LST model. Using the LST model, the system for
probabilistic flood runoff forecasting was developed. Pseudo forecasted rainfall data were generated by adding
Gaussian noise to 1- and 2-h ahead future observations collected from gauge points in Kuroki Dam. The generated
data were input to the LST model to calculate the distribution of forecasted discharges. The model performed well
in the simulation of both flood (short-term) and long-term runoff. The results show that the distributions of 1- and
2-h ahead flood runoff predicted by the proposed forecasting system were accurate, compared with observed data.
Therefore, it can provide useful information for efficient flood warning and protection planning.

Key words: Real-time flood forecasting, long- and short-term runoff (LST) model, Differential Evolution (DE)
technique, Particle filter (PF), pseudo forecasted rainfall
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1. INTRODUCTION

With increased frequency and intensity as well as irregular changes of natural disasters in the recent decades,
climate change continues to be one of the key risks affecting natural and human systems across the world (Phuong,
2017; Pachauri & Meyer, 2014). Climate change has largely impacted social, economic, and environmental
systems and shaped prospects for sustainable development in most countries (Munasinghe, 2007). In the last few
decades, floods have without doubt become one of the most devastating manifestations of climate change on Earth,



and every year, extreme floods have severe consequences for the society and mankind in terms of property
destruction and loss of lives (Plaza Guingla et al., 2013). A recent increase in damages caused by floods has
highlighted the need for significant measures to reduce damages and to protect lives. One of those most significant
measures is issuing flood forecasting systems.

Timely and accurate flood forecasting can help in estimating the extent of the eventual flooding and allow
safety measures to be taken at an earlier time, thereby reducing the destruction caused by extreme floods as well
as assisting the authority in flood rescue operations. Additionally, the provision of flood forecasting and warning
system is vital, practical, and promotes the mitigation of flood losses. It is, therefore, a requisite to develop flood
forecasting systems that can make predictions as accurately and early as possible during real-time flooding events.
To this end, a good forecasting system should be able to probabilistically estimate flood damage, such that
effective flood warning and protection planning can be efficiently designed.

In this study, the long- and short-term runoff model (LST model) was applied to analyze flood runoff and
long-term runoff successively and used to forecast flood in real-time. Parameters of the LST model were
calibrated using the differential evolutionary (DE) technique, and the particle filter (PF) technique was introduced
to improve the certainty of hydrological condition. Then, short-term rainfall prediction was conducted by creating
pseudo forecasted rainfall with Gaussian distribution, and probabilistic 1- and 2-h ahead flood forecasting was
finally performed in real-time using the LST model combined with PF.

2. RESEARCH CATCHMENT AND HYRDOLOGICAL DATA

The research was conducted in Kuroki Dam catchment,
which covers an area of 49.2 km2. The catchment is located N
upstream of Yoshii River Basin in the north of Okayama
Prefecture in Japan. Fig. 1 is a geographical map of the
Kuroki Dam catchment showing the locations of hydro-
meteorological stations.

In this study, hydrological data for 11 years from January
1991 to December 2001 were collected at Kuroki dam and
five gauging stations (Kurami, Iwabuchi, Daigasen, Aba, and
Tsuyama) in and around the catchment. The number of target
flood is 22. The collected data include hourly and daily data
of discharge and precipitation, and daily maximum and
minimum temperature.
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3. RESEARCH METHODS Kuroki Dam =~
3.1 Long- and short-term runoff (LST) model

) Fig. 1 Kuroki Dam catchment
The LST model, developed by Kadoya and Nagai (1988),

was applied to analyze long- and short-term runoff simultaneously and continuously. \ lr
The LST model consists of three storage tanks arranged in vertical series, and the top ' = Ja g
tank is composed of upper and lower layers, as shown in Fig. 2. S" 1(27 '
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where S is the water storage depth; r is the rainfall intensity; f is the infiltration rate; S;
g is the percolation rate; and Q is the runoff components in which Q, is the surface LS Los_Q,
runoff, Q, is the prompt subsurface runoff, Q5 is the delayed subsurface runoff, Q, is E;\g2
prompt groundwater runoff, and Qs is delayed groundwater runoff. E;~E5 are the
evapotranspiration rates from each tank, which are calculated as follows:
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E, = y6E E,=(1-y)E E; =y(1—-6)E (2)  Fig. 2 LST Model



where y is the separation ratio of evapotranspiration for the upper tank (y =0.6);0 =1if S; >0o0r S, = Zs,
0 =S,/Z;if S; = 0and S, < Zs; E is the actual evapotranspiration.
The actual evaporation, E, is estimated as the sum of the potential evaporation by the following equation:

E = Z;Llwi. ki .Ep (3)

where Ejis the potential evapotranspiration estimated by the Makkink equation; w; is the area ratio of the i-th
zone of the four altitudinal zones in the Kuroki Dam catchment; k; is a factor depending on weather conditions, in
which k; =1.0forr; =0and 0 < k; < 1.0 forr; > 0.

Runoff from each hole of the LST model is linearly related to the water storage depth in the respective tank,
except for Q,. The runoff Q,, Q3, Q,4, @5 and percolation g are calculated by the following equations by assuming
that runoff occurs from the holes only when the storage depth of the tank, S, exceeds its corresponding height, Z,
i.e., S > Z. The surface runoff, Q,, is assumed to be expressed by Manning’s law. Thus, m = 5/3 is used in Eq.
(4). Each of the abovementioned relations is summarized as follows:

Q1 =a,(5:—2;)™, m=5/3 Q2 = a5, Q3 = a3(S2 —Z3) , g1 = bS5, (4)
Q4 = 4453, g2 = b3S3 Qs = asS,

where a; is the runoff coefficient; b, is the infiltration coefficient: b, and b5 are percolation coefficients; and Z is
the height of the runoff holes.

3.2 Differential Evolution (DE) technique
The DE technique, originally developed by Storn and Price (1995), is a very simple stochastic population-
based global optimization technique. The DE-flow chart is pictorially represented in Fig. 3.

The selection and use of an appropriate and meaningful specific objective function, which is also considered as
an efficiency criterion or indicator in this case, is a critical step as it strongly affects the success rate in
hydrological modeling calibration using automatic optimization technique and in model performance assessment.
In this study, the parameters of the LST model were calibrated using the DE method under the objective functions
of mean absolute error (MAE) and Nash-Sutcliffe coefficient of efficiency (NSE), which are used to access the
goodness-of-fit of the simulation model to the available observations. MAE and NSE are defined as follows:

MAE = lZN |Q 0 | (5) NSE =1 — Zliv=1(Qsim,i—Qobs,i)2 (6)
— N &=l Ysimi obs,i - Z?’:l(Qobsi_agbs)z

MAE = 0 and NSE =1 indicate that the simulated values completely correspond to observed values.
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Fig. 3 A flow chart of DE’s generate-and-test loop

3.3 Particle filter (PF) technique

A major problem that often occurs in real-time forecasting is the uncertainty quantification (Weerts & El
Serafy, 2006). This uncertainty arises due to the oversimplification of the rainfall-runoff process, uncertainties of
the model structure and/or model parameters, and the limit of the hydrological information (Nagai, 2003; Kadoya
& Tanakaramu, 1989). This uncertainty problem can be efficiently solved by incorporating filtering techniques
into a rainfall-runoff model, promoting accurate real-time flood forecasting (Chen et al., 2018, Plaza Guingla et al.,
2013). In this research, the system for real-time 1- and 2-h ahead flood runoff forecasting was constructed using
the LST model in combination with the PF technique (Gordon et al., 1993). Assuming x as a state variable and y

as an observation variable, the procedure of the PF is outlined in the following steps:

Step 1: Randomly generate N initial particles [xt(i)]’i"=1 based on the proposed distribution n(xt|xt(?1,yo:t). The

number of particles is selected by the user as a tradeoff between computational effort and estimation accuracy.
Step 2: Prediction: Perform step (2.1) and (2.2) for each particle i

Step 2.1. Obtain the system noise u, from a known prior density function p(u,).

Step 2.2. xt_1|x§i_)1 is evolved over time by the state evolutional model x¢;—, = f(x¢-1,u.) and xt|xt(?1 is
obtained.
Step 3: Updating: Assume that observation data y, is obtained, performing step (3.1) to (3.3) for each particle i

Step 3.1. Compute the likelihood p(y,|x;) from xt|xt(i_)1



P (yt|xtlx§?1) = %UyeXp (— %)
Eq = |Qobs,; — QS|
oy =0.1Q%,;
Step 3.2. Use the likelihood density to determine the corresponding importance weight of each particle wt(i) =
POelx).
Calculate the total weight T,, = ’i"zlwt(i) and then normalize the particle weights as wt(i) = T,;lwt(i)

Step 3.3. Resample each particle based on w,” to obtain [x(}]1L,

Step 3.3.1. Construct the cumulative sum of weights (CSW) by computing ¢; = ¢;_; + wt(i) with ¢; = 0.
Step 3.3.2. Leti = 1 and draw a starting point w; from the uniform distribution U[0, N~1].

Step3.33.Forj=1,2,..,N
e Move along the CSW by making

W = uy + NG —-1) ‘ R: 1-hour ahead rainfall from the gauge point ‘
e Whilew; >c; makei=1i+1 l
e Assign samples: xl{' = x! ‘ Randomly create N samples R}’ ~Pyorm (R, @ X R) ‘

e Assign weights: w/ = N1
e Assign parents: i/ = i ‘ N values of 1-hour ahead discharge ‘
Step4: Returntostep2ast=t+1

Fig. 4 Formulation of pseudo forecasted rainfall

3.4 Formulation of pseudo forecasted rainfall data
Systems for flood runoff forecasting

require short-term prediction of rainfall. A few Table 1 Optimal model parameters
hours to days ahead online forecasts of rainfall (Kuroki Dam catchment)
are expected to improve flood forecast_lng pARAMETERS | Lower | veper | opTIMAL
accuracy. However, the Japan Meteorological BOUND | BOUND | PARAMETERS
Agency (JMA) only started providing 1 h to a al 0.001 0.05 0.0482
few days ahead of rainfall forecasting a2 0.01 0.1 0.0999
information since June 2019. The record length 2 0.001 0.1 0.0263
. . . . ad 0.0005 0.02 0.0199

of online rainfall forecasting by the JMA is not

. . A as 0.00001 0.001 0.0001
su_ff|C|ent for_ as_sessmg the_lnfluence of future bl 001 0.02 0.0200
rainfall prediction uncertainty on the runoff b2 0.001 0.04 0.0399
forecast. Additionally, reliable forecasted b3 0.001 0.01 0.0083
rainfall information is difficult to acquire. To Zl 5 200 149.1574
account for the missing data, we used pseudo Z2 5 500 499.6221
forecasted rainfall data created by adding 3 5 200 198917

. . . 2 3.

Gaussian noise to 1- and 2-h ahead rainfall o] 0 0 I
data collected from the gauge points in the > - 22 ekl
a A gauge p S3 0 1000 204.1633
research catchment instead of real forecasted ” 0 1000 9703223

rainfall information. Fig. 4 presents a brief
description of creating pseudo forecasted
rainfall.

Table 2 Accuracy of runoff simulation using LST model with
and without particle filter

MAE NSE (%)
LT (mm/d) | ST (m3/s) LT ST
4. RESULTS AND DISCUSSION LST 3.93 4.17 7540 71.34
LST + Particle filter 0.59 0.33 99.36 99.54

4.1 Runoff simulation by LST model

The unknown parameters of the LST model were calibrated via DE to optimize the objective function. MAE
and the NSE were used as objective functions for minimization and maximization, respectively. Optimal
parameters of the LST model and the error of daily and flood runoff are shown in Table 1. When the LST model



was optimized by minimizing MAE, the daily runoff error was 3.93 mm/d on average for 11 years. When
optimized by maximizing NSE, it was 75.40% (see Table 2). Two examples of simulated daily runoff are
presented in Fig. 5. The simulated hydrographs and results of MAE and NSE indicate that the calculated daily
runoff well agrees with the observed one. Hence, the optimized LST models can be considered to show good
performance in long-term runoff simulation.
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Fig. 5 Examples of simulated daily runoff by the LST model with particle filter

Fig. 6 shows that the calculated flood runoff hydrographs during four floods, which shows that the calculated
runoff well simulates the observed runoff. The MAE and NSE in every 1-h discharge for 22 floods shown in
Table 2 were 4.17 m3/s and 71.34%, respectively. Thus, the LST model also simulated the flood runoff suitably.
The results clearly indicate that the LST model simulated both long- and short-term runoff with good accuracy.

4.2 Runoff simulation by LST model with updating by patrticle filter

As the abovementioned results show that the identified runoff model has good applicability in the Kuroki Dam
catchment, the existing difference between the calculated and observed discharge can be mainly attributed to the
estimation of the areal average rainfall. The rainfall estimation error is believed to influence the storage depth of
the top tank, particularly the upper layer’s storage, S;, of the top tank that dominantly controls flood runoff. S;,
therefore, is considered to be the state variable in this research. With the application of the particle filter to storage
depth in the upper layer of the top tank, the simulation accuracy of the model can be expected to be significantly
improved in the short-term runoff. This improvement is shown in Table 2, in which MAE is decreased to 0.59
mm/d and NSE is increased to 99.36% in the case of the daily runoff, and 0.33 m3/s and 99.54%, respectively, in
the case of flood runoff.

Figs. 5 and 6 show the good agreement between calculated and observed discharge for both daily and flood
runoff, which proves that the combination of the LST model and particle filter can be used for real-time flood
forecasting.

4.3 Statistical forecast of discharge considering rainfall forecast uncertainty and updating by particle
filter
While planning countermeasures against flood disasters, the uncertainty of discharge forecasting should be
evaluated because it is strongly related to the security of our society. The uncertainty related to discharge
forecasting is considered to mainly arise from the uncertainty in rainfall forecasting. The influence of rainfall-
runoff modeling, which is another important factor in the uncertainty of discharge forecasting, has been already



minimized by optimization of the rainfall-runoff model using the DE technique. The uncertainty is inevitable in
forecasting, although the accuracy of the forecasted rainfall is essentially important for real-time flood forecasting.
Therefore, we here discuss the influence of uncertainty in rainfall forecasting on discharge forecasting.
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Fig. 6 Examples of simulated flood runoff by the LST with particle filter

The JMA started to deliver 1 h to a few days ahead of rainfall forecasting information in June 2019. This
record length is not yet sufficient for use and it is not easy to obtain a reliable record of real-time rainfall
information. Additionally, if reliable probabilistic information of future discharge is available, the alert level of
flood can be set by considering the exceedance probability of forecasted water levels, which is expected to be used
as valuable information for effective flood management. A method for creating pseudo forecasted rainfall data
was, therefore, applied to overcome this issue. Instead of using real forecasted rainfall information, we used
pseudo forecasted rainfall data created by adding Gaussian noise to the 1- and 2-h ahead future rainfall data
collected from gauge points in and around the research catchment. In this research the standard deviation of the
rainfall noise was selected as 10% of the future observed rainfall values and all the negative pseudo forecasted
rainfall generated from this method were replaced by 0. An example of the distribution of the pseudo forecasted
rainfall and the corresponding forecasted discharges are depicted in Fig. 7. With the method of creating pseudo
forecasted rainfall, a corresponding distribution of forecasted discharges could be obtained. The distribution of
forecasted discharge is a significant solution to deal with the problem of forecast uncertainty. It can be used to
probabilistically estimate flood risk, thereby supporting efficient real-time flood warning and protection plans.

Next, the mean of all the forecasted discharges was selected as the output for the flood forecasting and
compared with the observed discharge obtained from Kuroki dam to assess the accuracy of the proposed



forecasting system. Fig. 8 presents examples of the results for 1- and 2-h ahead flood forecasting in Kuroki Dam
catchment. The hydrographs show that the proposed forecasting method provides remarkably accurate estimations
of flood runoff forecasting. The accuracy of flood forecasting is expressed by the Normalized Root-Mean-Squared
Error (NRMSE) (given by Eq. 7), which is a measure of errors widely used to assess the forecasting accuracy
when comparing with observed values.

T _
RMSE = \/Zt:l(QDbs Qforcasted)z NRMSE = m{:MSE (7)
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Fig. 7 Example of distribution of pseudol-h and 2-h forecasted rainfall and corresponding
forecasted runoff

Table 3 Improvement of forecasting accuracy by filtering

Forecasting NRMSE (%)
method 1-h ahead 2-h ahead

No filter 9.98 11.10

Particle filter 5.05 7.40

The comparison between observed and forecasted discharge is shown in Fig. 9 for all floods, in which the
errors of 1- and 2-h ahead forecasting are 5.05% and 7.40%, respectively. NRMSE appears to increase with
increasing hours ahead of the flood forecasting, but it remained within an acceptable range. Flood runoff was also
forecasted without updating (no filter) and the results are presented in Table 3. It can be seen that application of
PF significantly improves the NRMSE. From the results, it is concluded that by introducing the filtering technique
(particle filter) to the LST model and applying a suitable method of rainfall prediction, the 1-h and 2-h ahead
flood can be accurately forecasted.

In this research, we used the pseudo probabilistic distribution of rainfall based on the observed rainfall to
consider probabilistic forecasting of future discharge. If more reliable probabilistic information of future
forecasted rainfall is available, real-time probabilistic discharge forecasting is expected to provide more valuable
information to for reducing flood damage.



1- and 2-hour ahead forecasting
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Fig. 8 Examples of real-time flood forecasting (1- and 2-h ahead)

5. CONCLUSION

In this study, the LST model was applied to hydrological data (1991-2001) in the Kuroki Dam catchment
(49.2 km?). Some conclusions can be drawn as follows:
(1) The LST model calibrated by the differential evolution technique can simulate both long-term and flood
runoff (short-term runoff) successively with good accuracy. The applicability of the model was tested
through continuous simulation for 11 years and for 22 floods.

(2) Using the method of creating pseudo forecasted rainfall, a distribution of forecasted discharge values can
be obtained. It can be used for probabilistic estimation of flood risk that is expected for application to
real-time flood warning and protection planning.

(3) The proposed forecasting system including the LST model combined with particle filter and using the
method of creating pseudo forecasted rainfall provided accurate 1- and 2-h ahead flood runoff forecasts.



More reliable probabilistic information of future forecasted rainfall can be obtained, more valuable information
for mitigating flood damage can be acquired by using generated real-time probabilistic discharge forecasting.
Hence, future research on efficient methods to probabilistically forecast rainfall data is expected.
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Fig. 9 Comparison between observed and forecasted discharge for all floods (1- and 2-h ahead forecasting)
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